Wannier Functions Lecture II

David Vanderbilt Rutgers University

Acknowledgments

Nicola Marzari - EPFL Arash Mostofi - Imperial College Jonathan Yates - University of Oxford Ivo Souza - San Sebastian Givoanni Pizzi - EPFL

Maximally localized Wannier functions: Theory and applications Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, David Vanderbilt Rev. Mod. Phys. 84, 1419-1475 (2012)

www.wannier.org

Outline

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
 - Covalent semiconductors and polymers
 - Perovskites
 - Liquid water
- Hybrid Wannier functions and centers (?)
- Summary and Conclusions

Silicon - conduction & valence states

Max-loc WFs ↔ "Exact" Tight-Binding

Compact mapping of Bloch states into local orbitals

$$\omega_n(\mathbf{r} - \mathbf{R}) = \frac{V}{8\pi^3} \int_{BZ} e^{-i\mathbf{k}\cdot\mathbf{R}} \psi_{n\mathbf{k}}(\mathbf{r}) d\mathbf{k}$$
$$\psi_{n\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{N_R}} \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \omega_n(\mathbf{r} - \mathbf{R})$$

Multiband case:

$$w_n(\mathbf{r} - \mathbf{R}) = \frac{V}{8\pi^3} \int_{BZ} e^{-i\mathbf{k}\cdot\mathbf{R}} \sum_m U_{mn}^{(\mathbf{k})} \psi_{m\mathbf{k}}(\mathbf{r}) \ d\mathbf{k}$$

Multiple bands:

$$w_n(\mathbf{r} - \mathbf{R}) = \frac{V}{8\pi^3} \int_{BZ} e^{-i\mathbf{k}\cdot\mathbf{R}} \sum_m U_{mn}^{(\mathbf{k})} \psi_{m\mathbf{k}}(\mathbf{r}) d\mathbf{k}$$

 $\widetilde{\psi}_{n\mathbf{k}}(\mathbf{r})$

Change of notation:

$$w_n(\mathbf{r} - \mathbf{R}) \longrightarrow |\mathbf{R}n\rangle$$

"Exact TB" Hamiltonian in real space:

$$H_{\mathbf{0}n,\mathbf{R}m} = \langle \mathbf{0}n | H | \mathbf{R}m \rangle$$

Corresponding k-space Hamiltonian:

DFT calc. on coarse grid

Construct WFs

Cheap calc. on fine grid

Corresponding k-space Hamiltonian:

Wannier interpolation of other operators

$$\mathcal{O}_{nm}(\mathbf{k}) = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \mathbf{0}n | \hat{\mathcal{O}} | \mathbf{R}m \rangle$$

- $\hat{\mathcal{O}} = H$: First-principles TB Hamiltonian
- $\hat{\mathcal{O}} = \hat{X} \,, \, \hat{Y} \,, \, \hat{Z} \quad$: Berry-related quantities

bcc Iron

Avoided Crossing in bcc Fe

Wannier90 code

Wannier90 v2.0

wannier90.x

serial executable minimisation of spread plot MLWF, bands, fermi surfaces ballistic transport

postw90.x

parallel (MPI) executable

DOS

DOS, Wannier projected DOS, net spin (all using fixed and adaptive smearing)

Berry Phase properties

Calculation of properties related to the k-space Berry curvature and Berry connection, including anomalous Hall conductivity, orbital magnetisation, and interband optical conductivity

BoltzWann

Calculation of electronic transport properties for bulk materials using the semiclassical Boltzmann transport equation

Outline

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
 - Covalent semiconductors and polymers
 - Perovskites
 - Liquid water
- Hybrid Wannier functions and centers
- Summary and Conclusions

Tutorial: Berry phases

Now take limit that density of points $\rightarrow \infty$

 $\phi = - \mathrm{Im} \, \ln \left[\left< u_1 | u_2 \right> \left< u_2 | u_3 \right> ... \left< u_{n-1} | u_n \right>
ight]$

Check: $|\widetilde{u}_2\rangle = e^{i\beta} |u_2\rangle$ has no effect.

Tutorial: Berry phases

$$\phi = -{
m Im} \oint d\lambda raket{u_\lambda |rac{d}{d\lambda}|u_\lambda}$$

"Gauge" transformation:

$$\widetilde{u}_\lambda
angle = e^{-ieta(\lambda)} \ket{u_\lambda}$$

Not hard to prove:

 ϕ is well-defined modulo 2π .

Berry phase and curvature in the BZ

Berry potential:

$$\mathbf{A}(\mathbf{k}) = -\mathrm{Im} raket{u_{\mathbf{k}} |
abla_{\mathbf{k}} | u_{\mathbf{k}}}$$

Berry phase:

$$\boldsymbol{\phi} = \oint \mathbf{A}(\mathbf{k}) \cdot d\mathbf{k}$$

Berry curvature:

 $\Omega(\mathbf{k}) = \nabla imes \mathbf{A}$

$$\Omega_z({f k}) = -2{
m Im}\,\left\langle \left. rac{du}{dk_x}
ight| \left. rac{du}{dk_y}
ight
angle
ight
angle$$

Stoke's theorem: $\phi = \int \Omega_{oldsymbol{z}}(\mathbf{k}) \, d^2k$

1D: BZ is really a loop

- Reciprocal space is really periodic
- Brillouin zone can be regarded as a loop

Modern Theory of Polarization

Problem:

Knowledge of bulk charge density $\rho(\mathbf{r})$ is not enough, even in principle, to determine **P**!

Solution:

Go beyond $|\psi_{n\mathbf{k}}(\mathbf{r})|^2$ to access Berry phase information hidden in $\psi_{n\mathbf{k}}(\mathbf{r})$

Polarization in a 1D insulator

$$\mathbf{P} = \frac{-e}{2\pi} \int_{\mathrm{BZ}} dk \, \langle u_{\mathbf{k}} | i \frac{d}{dk} | u_{\mathbf{k}} \rangle$$

Heuristically, $x \Leftrightarrow i \frac{d}{dk}$ (Compare $p \Leftrightarrow -i\hbar \frac{d}{dx}$)

$$\mathbf{P}=-erac{\phi}{2\pi}$$
 where $\phi=i\oint_{C}dkig\langle u_{\mathbf{k}}|rac{d}{dk}|u_{\mathbf{k}}
angle$

Polarization in a 2D insulator

$$\phi = - {
m Im} \int dk_y ig\langle \, u_{f k} \, | \, {d \over dk_y} | \, u_{f k} \,
angle$$

Polarization P_y is proportional to sum of k_x -averaged Berry phases of occupied bands

King-Smith and Vanderbilt, PRB 47, 1651 (1993)

Polarization ↔ Wannier centers

Polarization ↔ Wannier centers

Centers of Wannier functions:

$$egin{aligned} ert w_0 & > = rac{V}{(2\pi)^3} \, \int_{ ext{BZ}} d extbf{k} \, ert \psi_{ extbf{k}}
angle \ & = rac{V}{(2\pi)^3} \, \int_{ ext{BZ}} d extbf{k} \, e^{i extbf{k}\cdot extbf{r}} \, ert u_{ extbf{k}}
angle \end{aligned}$$

$$|\mathbf{r}|w_0
angle = rac{V}{(2\pi)^3} \,\int_{\mathrm{BZ}} d\mathbf{k} \left(\; - i
abla_{\mathbf{k}} \, e^{i\mathbf{k}\cdot\mathbf{r}} \,
ight) |u_{\mathbf{k}}
angle$$

$$=i\frac{V}{(2\pi)^3}\int_{\mathrm{BZ}}d\mathbf{k}\;e^{i\mathbf{k}\cdot\mathbf{r}}\left(\left.\nabla_{\mathbf{k}}\left|u_{\mathbf{k}}\right\rangle\right.\right)$$

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Polarization ↔ Wannier centers

Centers of Wannier functions:

Mapping to Wannier centers

Mapping to Wannier centers

Ordinary Hall conductivity

Anomalous Hall conductivity (AHC)

Anomalous Hall conductivity (AHC)

- Karplus-Luttinger theory (1954)
 - Scattering-free, intrinsic
- Skew-scattering mechanism (1955)
 - Impurity scattering
- Side-jump mechanism (1970)
 - Impurity or phonon scattering
- Berry-phase theory (1999)
 - Restatement of Karplus-Luttinger

Sundaram and Niu, PRB 59, 14925 (1999).

$$\sigma_{xy}^{\rm AHE} = \frac{-e^2}{(2\pi)^3\hbar} \sum_n \int$$

$$d^3k f_{n\mathbf{k}} \Omega_{n,z}(\mathbf{k})$$

A pure bandstructure effect!

Bandstructure of a metal

Non-magnetic metal: no net Berry curvature

Time-reversal symmetry $u(k_x, k_y) = u^*(-k_x, -k_y)$ $\Omega(\mathbf{k}) = -\Omega(-\mathbf{k})$ $\phi = 0$

Magnetic metal: things get interesting

$$\Omega_z(\mathbf{k}) = -2\mathrm{Im} \left\langle \left. \frac{du}{dk_x} \right| \left. \frac{du}{dk_y} \right\rangle \right\rangle$$

$$oldsymbol{\phi} = \int_{\mathsf{FS}} \Omega_{oldsymbol{z}}(\mathbf{k}) \, d^2 k$$

$$\sigma_{xy}^{\text{AHE}} = \frac{-e^2}{(2\pi)^3\hbar} \sum_n \int d^3k \, f_{n\mathbf{k}} \,\Omega_{n,z}(\mathbf{k})$$
(3D)

Avoided Crossing in bcc Fe

Wannier interpolation of other operators

$$\mathcal{O}_{nm}(\mathbf{k}) = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \mathbf{0}n | \hat{\mathcal{O}} | \mathbf{R}m \rangle$$

- $\hat{\mathcal{O}} = H$: First-principles TB Hamiltonian
- $\hat{\mathcal{O}} = \hat{X} \,, \, \hat{Y} \,, \, \hat{Z} \quad$: Berry-related quantities

Wannier interp. of Berry properties

Berry connection

Formal:
$$A_n(\mathbf{k}) = i \langle u_{n\mathbf{k}} | \nabla_{\mathbf{k}} | u_{n\mathbf{k}} \rangle$$

Practical: $A_{nm,\alpha}^{(W)}(\mathbf{k}) = \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \mathbf{0}n | \hat{r}_{\alpha} | \mathbf{R}m \rangle$
Berry curvature
Formal: $\Omega_n(\mathbf{k}) = \nabla \times A_n(\mathbf{k})$
Practical $\Omega_{nm,\alpha\beta}^{(W)}(\mathbf{k}) = \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{R}} (iR_\alpha \langle \mathbf{0}n | \hat{r}_\beta | \mathbf{R}m \rangle - iR_\beta \langle \mathbf{0}n | \hat{r}_\alpha | \mathbf{R}m \rangle)$

Anomalous Hall Conductivity

$$\sigma_{xy} = \frac{-e^2}{(2\pi)^2 h} \sum_n \int_{\mathrm{BZ}} d\mathbf{k} f_n(\mathbf{k}) \,\Omega_{n,z}(\mathbf{k})$$

$$\Omega_n(\mathbf{k}) = -Im\langle \nabla_{\mathbf{k}} u_{n,\mathbf{k}} | \times | \nabla_{\mathbf{k}} u_{n,\mathbf{k}} \rangle$$

Berry Curvature - example of a difficult BZ integral

Outline

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
 - Covalent semiconductors and polymers
 - Perovskites
 - Liquid water
- Hybrid Wannier functions and centers
- Summary and Conclusions

Diamond and zincblende structures

Si

GaAs

(diamond)

(zincblende)

*sp*₃ - *sp*₃ bond orbitals

Ethane, C_2H_6

*sp*₃ - *sp*₃ bond orbitals

Wannier functions: Si

Wannier functions: GaAs

Wannier functions in *a-Si*

Fornari et al.

Buckled dimer defect in Si

Collapse and amorphization of a Si cluster under pressure

Pressure: 25 GPa (a), 35 GPa (b) and back to 5 GPa (c). Small red "atoms" are the Wannier centers.

(Martonak et al., 2001)

Wannier analysis of PVDF polymers and copolymers

Outline

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
 - Covalent semiconductors and polymers
 - Perovskites
 - Liquid water
- Hybrid Wannier functions and centers
- Summary and Conclusions

Perovskite crystal structure

Example: Wannier functions in BaTiO₃

Example: Wannier functions in BaTiO₃

WFs in SrTiO₃

Outline

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
 - Covalent semiconductors and polymers
 - Perovskites
 - Liquid water
- Hybrid Wannier functions and centers
- Summary and Conclusions

Wannier centers in *I-H*₂O

Silvestrelli et al.

WFs define molecular dipoles

VOLUME 82, NUMBER 16

PHYSICAL REVIEW LETTERS

19 April 1999

Water Molecule Dipole in the Gas and in the Liquid Phase

Pier Luigi Silvestrelli* and Michele Parrinello

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany (Received 30 November 1998)

We study with *ab initio* molecular dynamics the change that the electric dipole moment of water molecules undergoes in passing from the gas to the liquid phase. Our analysis is based on the recently introduced maximally localized Wannier functions and is devoid of the ambiguities that have affected previous attempts. We find that in the liquid the dipole moment has an average value of about 3 D, 60% higher than in the gas phase. This value is much larger than is currently assumed (2.6 D). Furthermore, a broad distribution around this average value is observed. The relevance of these results for current modeling of water is discussed. [S0031-9007(99)08956-5]

Dipole moments in liquid phase

FIG. 4. Distribution of the modulus of the water molecule dipole moment in liquid water, by considering 12 molecular dynamics configurations.

Hydrogen bonds in water

H bonds enhance dipole moments of molecules

Wannier function of hydrated electron

VOLUME 90, NUMBER 22

PHYSICAL REVIEW LETTERS

week ending 6 JUNE 2003

First-Principles Molecular-Dynamics Simulations of a Hydrated Electron in Normal and Supercritical Water

Mauro Boero,^{1,2} Michele Parrinello,³ Kiyoyuki Terakura,² Tamio Ikeshoji,² and Chee Chin Liew²

Supercritical water

Outline

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
 - Covalent semiconductors and polymers
 - Perovskites
 - Liquid water
- Hybrid Wannier functions and centers
- Summary and Conclusions

Polarization in a 2D insulator

 $\phi(k_x)$ = Berry phase along y at given k_x = "Hybrid Wannier centers"

ICTS School, Bangalore, January 7 2014

 $P_{V}(k_{x}) \propto \phi(k_{x})$

Polarization in 3D: Hybrid WFs again

Polarization in a 3D insulator

Hybrid Wannier centers for normal band

$$\phi(k_{x}) -\ln \ln \left[\langle u_{1} | u_{2} \rangle \langle u_{2} | u_{3} \rangle \dots \langle u_{n-1} | u_{n} \rangle \right]$$

$$k_{y} = \begin{pmatrix} 0.25 \\ 0.20 \\ 0.15 \\ 0.10 \\ 0.05 \\ 0.00 \\ 0.00 \\ 0.02 \\ 0.14 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.5 \\ 0.00 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.8 \\$$

Hybrid Wannier centers for QAH band

Z_2 insulator: Hybrid WF centers $\overline{y}(k_x)$

Z_2 insulator: Hybrid WF centers $\bar{y}(k_x)$

Kane-Mele tight-binding model

 Z_2 -odd

Polarization in 3D: Hybrid WFs again

Hybrid WF sheets

Hybrid WF sheets

3D Kane-Mele model

- Spin-dependent hopping

Hybrid WF sheets

Q RUTGERS

First-principles calculation: Bi₂Se₃

H. Zhang et al., Nature Physics 5, 2009

First-principles Bi₂Se₃ Wannier centers

First-principles Bi₂Se₃ Wannier centers

Summary

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
 - Covalent semiconductors and polymers
 - Perovskites
 - -Liquid water
- Hybrid Wannier functions and centers

Wannier90 code

EXTRAS

