Wannier Functions Lecture II

David Vanderbilt Rutgers University

Acknowledgments

Nicola'Marzari'+'EPFL' Arash Mostofi - Imperial College Jonathan Yates - University of Oxford Ivo Souza - San Sebastian Givoanni Pizzi'+'EPFL'

Maximally localized Wannier functions: Theory and applications Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, David Vanderbilt **Rev.'Mod.'Phys.'84,'1419+1475'(2012)**

www.wannier.org

Outline

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
	- Covalent semiconductors and polymers
	- Perovskites
	- Liquid water
- Hybrid Wannier functions and centers (?)
- Summary and Conclusions

Silicon - conduction & valence states

Max-loc WFs Exact- Tight-Binding

Compact mapping of Bloch states into local orbitals

$$
\omega_n(\mathbf{r} - \mathbf{R}) = \frac{V}{8\pi^3} \int_{BZ} e^{-i\mathbf{k} \cdot \mathbf{R}} \psi_{n\mathbf{k}}(\mathbf{r}) d\mathbf{k}
$$

$$
\psi_{n\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{N_R}} \sum_{R} e^{i\mathbf{k} \cdot \mathbf{R}} \omega_n(\mathbf{r} - \mathbf{R})
$$

Multiband case:

$$
w_n(\mathbf{r} - \mathbf{R}) = \frac{V}{8\pi^3} \int_{BZ} e^{-i\mathbf{k} \cdot \mathbf{R}} \sum_m U_{mn}^{(\mathbf{k})} \psi_{m\mathbf{k}}(\mathbf{r}) d\mathbf{k}
$$

$$
\text{Multiple bands:}
$$
\n
$$
w_n(\mathbf{r} - \mathbf{R}) = \frac{V}{8\pi^3} \int_{BZ} e^{-i\mathbf{k} \cdot \mathbf{R}} \sum_{m} U_{mn}^{(\mathbf{k})} \psi_{m\mathbf{k}}(\mathbf{r}) \, d\mathbf{k}
$$
\nChange of notation:

Change of notation:

$$
w_n(\mathbf{r}-\mathbf{R})\ \longrightarrow\ |\mathbf{R} n\rangle
$$

"Exact TB" Hamiltonian in real space:

$$
H_{\mathbf{0}n, \mathbf{R}m} = \langle \mathbf{0}n|H|\mathbf{R}m\rangle
$$

Corresponding k-space Hamiltonian:

DFT calc. on

DFT calc. on Construct WFs Cheap calc. on Construct WFs Cheap calc. on fine grid

Corresponding k-space Hamiltonian:

Wannier interpolation of other operators

$$
\mathcal{O}_{nm}(\mathbf{k}) = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \langle 0n|\hat{\mathcal{O}}|\mathbf{R}m\rangle
$$

- $\hat{\mathcal{O}}=H$: First-principles TB Hamiltonian
- $\hat{\mathcal{O}} = \hat{X}$, \hat{Y} , \hat{Z} : Berry-related quantities

bcc Iron

Avoided Crossing in bcc Fe

Wannier90 code

Wannier90 v2.0

wannier90.x

serial executable minimisation of spread plot MLWF, bands, fermi surfaces ballistic transport

postw90.x

parallel (MPI) executable

DOS

DOS, Wannier projected DOS, net spin (all using fixed and adaptive smearing)

Berry Phase properties

Calculation of properties related to the k-space Berry curvature and Berry connection, including anomalous Hall conductivity, orbital magnetisation, and interband optical conductivity

BoltzWann

Calculation of electronic transport properties for bulk materials using the semiclassical Boltzmann transport equation

Outline

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
	- Covalent semiconductors and polymers
	- Perovskites
	- Liquid water
- Hybrid Wannier functions and centers
- Summary and Conclusions

Tutorial: Berry phases

Now take limit that density of points →∞

 $-\text{Im}\,\ln\left[\, \langle u_1 | u_2 \rangle \, \langle u_2 | u_3 \rangle \dots \langle u_{n-1} | u_n \rangle \, \right]$ φ

Check: $|\widetilde{u}_2\rangle = e^{i\beta} |u_2\rangle$ has no effect.

Tutorial: Berry phases

 $\phi = -\text{Im} \oint d\lambda \, \langle u_{\lambda} | \frac{d}{d\lambda} | u_{\lambda} \rangle$

"Gauge" transformation:

$$
\left|\widetilde{u}_{\lambda}\right\rangle=e^{-i\beta(\lambda)}\left|u_{\lambda}\right\rangle
$$

Not hard to prove:

 ϕ is well-defined modulo 2π.

Berry phase and curvature in the BZ

TGERS

Berry potential:

$$
\mathbf{A}(\mathbf{k})=-\mathrm{Im}\left\langle u_{\mathbf{k}}|\nabla_{\mathbf{k}}|u_{\mathbf{k}}\right\rangle
$$

Berry phase:

$$
\phi = \oint \mathbf{A}(\mathbf{k}) \cdot d\mathbf{k}
$$

Berry curvature:

 $\Omega(\mathbf{k}) = \nabla \times \mathbf{A}$

$$
\Omega_z(\mathbf{k}) = -2\mathrm{Im}\, \left\langle \left. \frac{du}{dk_x}\right| \frac{du}{dk_y} \right\rangle
$$

Stoke's theorem: $\phi = \int \Omega_z(\mathbf{k}) d^2k$

1D: BZ is really a loop

- Reciprocal space is really periodic
- Brillouin zone can be regarded as a loop

RUTGERS

Modern Theory of Polarization

Problem:

Knowledge of bulk charge density ρ(**r**) is not enough, even in principle, to determine **P** !

Solution:

Go beyond $|\psi_{nk}(r)|^2$ to access Berry phase information hidden in $\psi_{n\mathbf{k}}(\mathbf{r})$

Polarization in a 1D insulator

$$
\mathbf{P} = \frac{-e}{2\pi} \int_{\text{BZ}} dk \, \langle u_{\mathbf{k}} | i \frac{d}{dk} | u_{\mathbf{k}} \rangle
$$

Heuristically, $x \Leftrightarrow i \frac{d}{dk}$ (Compare $p \Leftrightarrow -i\hbar \frac{d}{dx}$

$$
\mathbf{P} = -e \, \frac{\phi}{2\pi} \quad \text{ where } \quad \phi = i \, \oint_C dk \, \langle u_\mathbf{k} | \, \frac{d}{dk} \, | u_\mathbf{k} \rangle
$$

Polarization in a 2D insulator

$$
\phi=-\mathrm{Im}\int dk_y\,\langle\,u_{\mathbf{k}}\,|\,\frac{d}{dk_y}\,|\,u_{\mathbf{k}}\,\rangle
$$

Polarization P_{V} is proportional to sum of k_x -averaged Berry phases of occupied bands

Resta, Ferroelectrics 136, 51 (1992)

King-Smith and Vanderbilt, PRB 47, 1651 (1993)

$Polarization \leftrightarrow Wannier centers$

Crystal in real space:

Polarization \leftrightarrow Wannier centers

Centers of Wannier functions:

$$
|w_0\rangle = \frac{V}{(2\pi)^3} \int_{\text{BZ}} d\mathbf{k} | \psi_{\mathbf{k}} \rangle
$$

$$
= \frac{V}{(2\pi)^3} \int_{\text{BZ}} d\mathbf{k} e^{i\mathbf{k} \cdot \mathbf{r}} |u_{\mathbf{k}} \rangle
$$

$$
\mathbf{r} \, | \, w_0 \rangle = \frac{V}{(2\pi)^3} \, \int_{\rm BZ} d\mathbf{k} \, \left(\, - i \nabla_{\mathbf{k}} \, e^{i\mathbf{k} \cdot \mathbf{r}} \, \right) | u_{\mathbf{k}} \rangle
$$

$$
=i\frac{V}{(2\pi)^3}\int_{\rm BZ}d{\bf k}\,e^{i{\bf k}\cdot{\bf r}}\left(\left.\nabla_{\bf k}\left|u_{\bf k}\right.\right>\right)
$$

$$
\left\langle w_{\mathbf{0}}\,|\,\mathbf{r}\,|\,w_{\mathbf{0}}\right\rangle =i\frac{V}{(2\pi)^{3}}\int_{\mathrm{BZ}}d\mathbf{k}\left\langle u_{\mathbf{k}}\right|\nabla_{\mathbf{k}}\left|u_{\mathbf{k}}\right\rangle
$$

Polarization \leftrightarrow Wannier centers

Centers of Wannier functions:

Mapping to Wannier centers

Mapping to Wannier centers

Ordinary Hall conductivity

Anomalous Hall conductivity (AHC)

Anomalous Hall conductivity (AHC)

- Karplus-Luttinger theory (1954)
	- Scattering-free, intrinsic
- Skew-scattering mechanism (1955)
	- Impurity scattering
- Side-jump mechanism (1970)
	- Impurity or phonon scattering
- Berry-phase theory (1999)
	- Restatement of Karplus-Luttinger

Sundaram and Niu, PRB 59, 14925 (1999).

$$
\sigma_{xy}^{\rm AHE}=\frac{-e^2}{(2\pi)^3\hbar}\sum_n\int
$$

$$
d^3k\,f_{n\mathbf{k}}\,\Omega_{n,z}(\mathbf{k})
$$

A pure bandstructure effect!

Bandstructure of a metal

Non-magnetic metal: no net Berry curvature

FS $u(k_x, k_y) = u^*(-k_x, -k_y)$ $\phi = 0$ Time-reversal symmetry ⇓ $\Omega(\mathbf{k}) = -\Omega(-\mathbf{k})$ ⇓ ⇓

Magnetic metal: things get interesting

$$
\Omega_z(\mathbf{k}) = -2\text{Im}\,\left\langle \left. \frac{du}{dk_x} \right| \frac{du}{dk_y} \right\rangle
$$

$$
\phi = \int_{\mathsf{FS}} \Omega_{\bm{z}}(\mathbf{k})\,d^2k
$$

$$
\sigma_{xy}^{\text{AHE}} = \frac{-e^2}{(2\pi)^3 \hbar} \sum_n \int d^3k f_{n\mathbf{k}} \Omega_{n,z}(\mathbf{k})
$$
\n(3D)

Avoided Crossing in bcc Fe

Wannier interpolation of other operators

$$
\mathcal{O}_{nm}(\mathbf{k}) = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \langle 0n|\hat{\mathcal{O}}|\mathbf{R}m\rangle
$$

- $\hat{\mathcal{O}} = H$: First-principles TB Hamiltonian
- $\hat{\mathcal{O}} = \hat{X}$, \hat{Y} , \hat{Z} : Berry-related quantities

Wannier interp. of Berry properties

Berry connection

Formal:
$$
\mathbf{A}_{n}(\mathbf{k}) = i \langle u_{n\mathbf{k}} | \nabla_{\mathbf{k}} | u_{n\mathbf{k}} \rangle
$$

\nPractical:
$$
A_{nm,\alpha}^{(w)}(\mathbf{k}) = \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{R}} \langle 0_{n} | \hat{r}_{\alpha} | \mathbf{R} m \rangle
$$

\nBerry curvature
Formula:
$$
\mathbf{\Omega}_{n}(\mathbf{k}) = \nabla \times \mathbf{A}_{n}(\mathbf{k})
$$

\nPractical
$$
\Omega_{nm,\alpha\beta}^{(w)}(\mathbf{k}) = \sum_{\mathbf{R}} e^{i \mathbf{k} \cdot \mathbf{R}} \langle i R_{\alpha} \langle 0_{n} | \hat{r}_{\beta} | \mathbf{R} m \rangle - i R_{\beta} \langle 0_{n} | \hat{r}_{\alpha} | \mathbf{R} m \rangle \rangle
$$

Anomalous Hall Conductivity

$$
\sigma_{xy} = \frac{-e^2}{(2\pi)^2 h} \sum_n \int_{\rm BZ} d{\bf k} \, f_n({\bf k}) \, \Omega_{n,z}({\bf k})
$$

TGERS

 $\Omega_n(\mathbf{k}) = -Im \langle \nabla_{\mathbf{k}} u_{n,\mathbf{k}} | \times | \nabla_{\mathbf{k}} u_{n,\mathbf{k}} \rangle$

Berry Curvature - example of a difficult BZ integral

Outline

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
	- Covalent semiconductors and polymers
	- Perovskites
	- Liquid water
- Hybrid Wannier functions and centers
- Summary and Conclusions

Diamond and zincblende structures

Si

GaAs

(diamond)

(zincblende)

sp_3 - sp_3 bond orbitals

Ethane, C_2H_6

sp_3 - sp_3 bond orbitals

Wannier functions: Si

Wannier functions: GaAs

Wannier functions in a-Si

Fornari et al.

Buckled dimer defect in Si

Collapse and amorphization of a Si cluster under pressure

Pressure: 25 GPa (a), 35 GPa (b) and back to 5 GPa (c). Small red "atoms" are the Wannier centers.

(Martonak et al., 2001)

Wannier analysis of PVDF polymers and copolymers

Outline

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
	- Covalent semiconductors and polymers
	- Perovskites
	- Liquid water
- Hybrid Wannier functions and centers
- Summary and Conclusions

Perovskite crystal structure

Example: Wannier functions in BaTiO₃

Example: Wannier functions in BaTiO₃

WFs in $SrTiO₃$

Outline

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
	- Covalent semiconductors and polymers
	- Perovskites
	- Liquid water
- Hybrid Wannier functions and centers
- Summary and Conclusions

Wannier centers in $I-H₂O$

Silvestrelli et al.

WFs define molecular dipoles

VOLUME 82, NUMBER 16

PHYSICAL REVIEW LETTERS

19 APRIL 1999

Water Molecule Dipole in the Gas and in the Liquid Phase

Pier Luigi Silvestrelli* and Michele Parrinello

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany (Received 30 November 1998)

We study with ab initio molecular dynamics the change that the electric dipole moment of water molecules undergoes in passing from the gas to the liquid phase. Our analysis is based on the recently introduced maximally localized Wannier functions and is devoid of the ambiguities that have affected previous attempts. We find that in the liquid the dipole moment has an average value of about 3 D, 60% higher than in the gas phase. This value is much larger than is currently assumed (2.6 D). Furthermore, a broad distribution around this average value is observed. The relevance of these results for current modeling of water is discussed. [S0031-9007(99)08956-5]

Dipole moments in liquid phase

FIG. 4. Distribution of the modulus of the water molecule dipole moment in liquid water, by considering 12 molecular dynamics configurations.

Hydrogen bonds in water

H bonds enhance dipole moments of molecules

Wannier function of hydrated electron

VOLUME 90, NUMBER 22

PHYSICAL REVIEW LETTERS

week ending
6 JUNE 2003

First-Principles Molecular-Dynamics Simulations of a Hydrated Electron in Normal and Supercritical Water

Mauro Boero,^{1,2} Michele Parrinello,³ Kiyoyuki Terakura,² Tamio Ikeshoji,² and Chee Chin Liew²

GERS

Outline

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
	- Covalent semiconductors and polymers
	- Perovskites
	- Liquid water
- Hybrid Wannier functions and centers
- Summary and Conclusions

Polarization in a 2D insulator

= "Hybrid Wannier centers" ϕ (k_{x}) = Berry phase along y at given k_{x}

ICTS School, Bangalore, January 7 2014

 $P_{V}^{}(k_{x}^{}) \propto \phi(k_{x}^{})$

Polarization in 3D: Hybrid WFs again

Polarization in a 3D insulator

Hybrid Wannier centers for normal band

^k^x ^k^x ky ^Py (kx) ∝ φ (kx) Py φ (kx)

Hybrid Wannier centers for QAH band

Z_2 insulator: Hybrid WF centers $\bar{y}(k_x)$

Z_2 insulator: Hybrid WF centers $\bar{y}(k_x)$

Kane-Mele tight-binding model

 Z_2 -odd

Polarization in 3D: Hybrid WFs again

Hybrid WF sheets

Hybrid WF sheets

3D Kane-Mele model

Spin-dependent hopping

Hybrid WF sheets

RUTGERS

First-principles calculation: $Bi₂Se₃$

H. Zhang et al., Nature Physics **5**, 2009

First-principles Bi₂Se₃ Wannier centers

First-principles Bi₂Se₃ Wannier centers

TGERS

Summary

- Wannier interpolation
- Electric polarization and anomalous Hall
- Chemical bonding and polar properties
	- Covalent semiconductors and polymers
	- Perovskites
	- Liquid water
- Hybrid Wannier functions and centers

Wannier90 code

EXTRAS

