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Silicon - conduction & valence states
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Max-loc WFs « “Exact” Tight-Binding

Compact mapping of Bloch states into local orbitals

0, (6 -R) = —— [ ™y, (r)dk
@ 8” BZ §
1 'k-R
Y (r) = E e w,(r-R)
R

A

Multiband case:

wn(r - R) — o3 /BZ e—ik.R Z Urg’lz{r)z 2bmk(r) dk
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Wannier interpolation

Multiple bands:
wnp(r—R) = l / _ZkRZUk)wmk

Y

2//’nk(r)

Change of notation:
wp(r —R) — |Rn)

“Exact TB” Hamiltonian in real space:

Honrm = (On|H|Rm)
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Wannier interpolation

Corresponding k-space Hamiltonian:

Hnm(k) — <1/;nk|H|1/;mk>

— Z eik.R HOn,Rm
R
Dlagcz)g?allze _ Z ok R (On|H|Rm>
recover R
Y Gone in circles?
En(k), Upnn(k) Not quite...
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DFT calc. on
coarse grid

Wannier interpolation

Construct WFs

Cheap calc. on
fine grid
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Wannier interpolation

Corresponding k-space Hamiltonian:

Hnm(k) — <1/;nk|H|Q/;mk>

— Z eik.R HOn,Rm
R
Diagcg;alize _ Z ok R (On|H|Rm)
recover R
v DO THIS ON
MUCH FINER
GRID |
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Wannier interpolation of other operators

Onm(k) =) ™" (0n|O|Rm)
R

S
]
S

: First-principles TB Hamiltonian

OF
|

>
L<

. Z : Berry-related quantities
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bce Iron

18 spinor Wannier functions
Keep up to 4th neighbour overlaps
Cost 1/2000 of full calculation
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Avoided Crossing in bcc Fe

O

- -1

\ 115
=l 2

-
<

Spin up Spin down H
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Wannier90 code

Authors

Arash Mostofi Wannier interpolation,
Jonathan Yates

Giovanni Pizzi transport, etc.

Ivo Souza

Nicola Marzari t

David Vanderbilt

Wannier90

7/ NN

pwscf fleur abinit siesta Wien2k VASP
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Wannier90 v2.0

wannier90.x
serial executable
minimisation of spread
plot MLWF, bands, fermi surfaces
ballistic transport

postw90.x
parallel (MPI) executable

DOS
DOS, Wannier projected DOS, net spin (all using fixed and adaptive smearing)

Berry Phase properties
Calculation of properties related to the k-space Berry curvature and Berry connection,

including anomalous Hall conductivity, orbital magnetisation, and interband optical
conductivity

BoltzWann
Calculation of electronic transport properties for bulk materials using the semiclassical
Boltzmann transport equation
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Outline

e Wannier interpolation

e Electric polarization and anomalous Hall

e Chemical bonding and polar properties
— Covalent semiconductors and polymers
— Perovskites
— Liquid water

e Hybrid Wannier functions and centers

e Summary and Conclusions
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Tutorial: Berry phases

| Ug) | us)

Now take limit
| u2) that density of

u=luy | PO T
| un-1>
»  —Im In | {w|ug) (ua|us)... (Un 1|ty ]

Check: |ws) = €% |us) has no effect.
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Tutorial: Berry phases

)
“Gauge” transformation:

"=0 Uy — e PV |uy)

Not hard to prove:

— T § A (usl %) | |
¢ is well-defined

modulo 2.

6= —Im f AA (x| )
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Berry phase and curvature in the BZ

| J > Berry potential:
', T \ K A(k) = —Im (uy| Vic|uy)
7 ) Berry phase;
ky | ’%#,
\ /6 b — f A(k) - dk
N J Berry curvature:
Uk)=VXA
0 kx 27/a
—ik-r
uk(r) = e Yx(r)
——
Bloch function

ICTS School, Bangalore, January 7 2014




1D: BZ is really a loop

e Reciprocal space is really periodic
e Brillouin zone can be regarded as a loop

]
E E
—n/a = 0 >k n/a T ;k
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P = dce// / ce//

dcell = fcell I‘p(l‘) C|3I‘
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P = dce// / Vce// ?




P = dce// / ce//

0
5£>

&S

@

deoy = Joar F () d7r

deey = l




Modern Theory of Polarization

Problem:

Knowledge of bulk charge density o(r) is not
enough, even in principle, to determine P!

Solution:

Go beyond |y, (r)|? to access Berry phase
information hidden in vy, (F)
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Polarization in a 1D insulator

—€

_ - d
P = o /. dk (w|i-|ux)
Heuristically, = & iw  (C & —ihs)
euristica T i— ompare : —ih—
2 dk P p dz
S
¢ N—~——————
P=—-e— where | p=1 j{ dk (uy| & |uy)
2T o,
C
C—\
k
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Polarization in a 2D insulator

=1 Polarization P, is
proportional to sum
k of k,-averaged
Uy Berry phases of
occupied bands

0 K, 2n/a Resta, Ferroelectrics 136, 51 (1992)

@z—IHl/dky(Uk|E|uk} m
y

d
King-Smith and Vanderbilt,
PRB 47, 1651 (1993)
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Polarization <= Wannier centers

Crystal in real space:

~N

]

Brillouin zone in reciprocal space: /

\

wr(r) =) (r) e Rdk
\ ;

\/ wo(r) = Y i(r) dk
k

Jnitary transformation

—n/a

n/a
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Polarization <= Wannier centers

Centers of Wannier functions:

Vv

Vv
(2?")3 BZ

dk eik-r | uk)

v
(27)® Jpg

(2m)3 Jpz

dk ( — iV €™ ) Ju)

r|wo) =

dk e**T (Vk |uk) )

V

(2m)° Bzdk (] Vi o)

{(we |r | wo) =4

ICTS School, Bangalore, January 7 2014




Polarization <= Wannier centers

Centers of Wannier functions:

® © @x[@\/(+>~e ®

<

P

(wolatwn) =i [ di (uk%\m)

o

¢

- g —

2
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Mapping to Wannier centers

©
©

DS

©
©

SSOS
OQ)
1 Wannier
center
; - - r,

1 + [ + I
| + I + I
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Mapping to Wannier centers

7 XA
NH N
NE— N

NG
5% AN
=eanwe >l
“2rsrai?

€% RUTGERS

.
Wannier center

T = o = o m of band 1

\ (charge -2e)
a — —

i Wannier center
- +* = %+ = of band 2
_\ _ (charge -2e)
Electric polarization P
Location of ion of the crystal can be
(nucleus) deduced from

(charge +4e) pictures like this
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Ordinary Hall conductivity

N

ICTS School, Bangalore, January 7 2014




Anomalous Hall conductivity (AHC)

Ferromagnet

\

rret

Hapy =
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Anomalous Hall conductivity (AHC)

o Karplus-Luttinger theory (1954)
— Scattering-free, intrinsic

o Skew-scattering mechanism (1955)
— Impurity scattering

e Side-jump mechanism (1970)
— Impurity or phonon scattering

e Berry-phase theory (1999) Suns;r?[z}n9gr5]d(1\|§;;’9 ;RB

— Restatement of Karplus-Luttinger

2
AHE = —€ Z 3

A pure bandstructure effect!

ICTS School, Bangalore, January 7 2014




Bandstructure of a metal

Fermi Energy E — /é /
k

y
K

X
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Non-magnetic metal: no net Berry curvature

Time-reversal
symmetry

K J
- u(k,, k) = u*(k,, k)
J
Q(k) = -Q(-k)
J
=0

| up)

0 kx 27t/a
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Magnetic metal: things get interesting

)
0, (k) = —2Im < :}:i :;)
ky
FS ¢ = f . (k) d*k
FS
0 kx 27t/a

2
AHE —€ 3

— E () k
Oy (2m)3h /d K frak S, = (K)

(3D)
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Avoided Crossing in bcc Fe

0.5

DN

ROZIR,
=7

(\

_
<

?920%\ - -1
\ -~ -1.5
=l 2
Spin up Spin down H
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Wannier interpolation of other operators

Onm(k) =) ™" (0n|O|Rm)
R

S
]
S

: First-principles TB Hamiltonian

OF
|

>
L<

. Z : Berry-related quantities
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Wannier interp. of Berry properties

Berry connection

Formal: An(k) - I.<us'1k|vlst|“nk)
Practical: A™ (k)= > ®0n|7 |Rm)

R
Berry curvature \

position operator in Wannier
basis is well defined!

Formal: Q,(k)=V X A k) / \

Practical Q) 4(k) = 2 e®R(R (0n|#dRm) — iR 1(On|#,|Rm))
R
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Anomalous Hall Conductivity

~ 2
Oxy — W ;LZ dk fn(k) Qn,z(k) Qn(k) — —Im<Vk’U;n,k| X |Vkun,k>

40001 il Berry Curvature - example of a
: : difficult BZ integral

20001 .

0 D /Lr,_
? 165
E 1 04
' 1e3 .
I | 102
AR . b

-1e1
-0.2

-1 -0.4 -1e3

Berry Curvature (atomic units)

-1e5
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Outline

e Wannier interpolation

e Electric polarization and anomalous Hall

e Chemical bonding and polar properties
— Covalent semiconductors and polymers
— Perovskites
— Liquid water

e Hybrid Wannier functions and centers

e Summary and Conclusions

ICTS School, Bangalore, January 7 2014




Diamond and zincblende structures

Si GaAs

(diamond) (zincblende)
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sps - Sp; bond orbitals

Ethane, C,H,
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sps - Sp; bond orbitals
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Wannier functions: Si
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Wannier functions: GaAs

|
//

Energy (eV)
o
-\
N
/
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Wannier functions
in 8-S/

Fornari et al.




Buckled dimer defect in Si
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Collapse and amorphization of a Si cluster under pressure

Pressure: 25 GPa (a), 35 GPa (b) and back to 5 GPa (¢).
Small red “atoms” are the Wannier centers.

(Martonak et al., 2001)
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Wannier analysis of PVDF polymers and copolymers

LS

L

'”‘«‘ ‘&. i

) ) s )
T

—&

=) . .

v S

Courtesy S. Nakhmanson




Outline

Wannier interpolation

Electric polarization and anomalous Hall
Chemical bonding and polar properties

— Covalent semiconductors and polymers
— Perovskites

— Liquid water

Hybrid Wannier functions and centers
Summary and Conclusions
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Perovskite crystal structure

0
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Example: Wannier functions in BaTiOs;

BaTiO, Ti 3d
Mainly Ti 3d
(also some O 2p)

Mainly O 2p
(also some Ti 3d)

I

OZ2p
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Example: Wannier functions in BaTiOs;

BaTiO,
Ti 3d

A

Mainly O 2Zp
(also some Ti 3d) @) Z,D
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WFs in SrTiO,

(@) L S
ol 1% ol1q
Ti @ »
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Outline

e Wannier interpolation

e Electric polarization and anomalous Hall

e Chemical bonding and polar properties
— Covalent semiconductors and polymers
— Perovskites
— Liguid water

e Hybrid Wannier functions and centers

e Summary and Conclusions
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Wannier centers in /-H,0

Silvestrelli et al.




WFs define molecular dipoles

VOLUME 82, NUMBER 16 PHYSICAL REVIEW LETTERS 19 APRIL 1999

Water Molecule Dipole in the Gas and in the Liquid Phase

Pier Luigi Silvestrelli* and Michele Parrinello

Max-Planck-Institut fiir Festkorperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
(Received 30 November 1998)

We study with ab initio molecular dynamics the change that the electric dipole moment of water
molecules undergoes in passing from the gas to the liquid phase. Our analysis is based on the recently
introduced maximally localized Wannier functions and is devoid of the ambiguities that have affected
previous attempts. We find that in the liquid the dipole moment has an average value of about 3 D, 60%
higher than in the gas phase. This value is much larger than is currently assumed (2.6 D). Furthermore,
a broad distribution around this average value is observed. The relevance of these results for current
modeling of water is discussed. [S0031-9007(99)08956-5]

—
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Dipole moments in liquid phase

probability distribution

dipole moment (D)

FIG. 4. Distribution of the modulus of the water molecule
dipole moment in liquid water, by considering 12 molecular

dynamics configurations.
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Hydrogen bonds in water

H bonds enhance dipole moments of molecules
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Wannier function of hydrated electron

PHYSICAL REVIEW LETTERS week ending

VOLUME 90, NUMBER 22 6 JUNE 2003

First-Principles Molecular-Dynamics Simulations of a Hydrated Electron
in Normal and Supercritical Water

Mauro Boero,"? Michele Parrinello,’ Kiyoyuki Terakura,” Tamio Ikeshoji,” and Chee Chin Liew”

Supercritical water Normal water
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Outline

e Wannier interpolation

e Electric polarization and anomalous Hall

e Chemical bonding and polar properties
— Covalent semiconductors and polymers
— Perovskites
— Liquid water

o Hybrid Wannier functions and centers

e Summary and Conclusions
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Polarization in a 2D insulator

¢ (Kk,) = Berry phase along y at given k,
= “Hybrid Wannier centers”

P,(k,) « ¢ (k)
¢ (k) - /

025 i )

0.20T o) ®
k 0.15f o ® -

0.107 ®
0.0571

0085 0.2 04 0.6 0.8 1.0

K, k

X
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Polarization in 3D: Hybrid WFs again

(27, 27, 27)

(27, 27,0)

OkOOOOOOO

o © o ¢ ¢ € © ©] 0
o o © ¢ & & @

y
= K, (0,0,0) (271,0,0)
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Polarization in a 3D insulator

t Real space z
Ions
[) Hybrid
V4 Wannier
o centers
dipole

ICTS School, Bangalore, January 7 2014




Hybrid Wannier centers for normal band

¢ (k) —Imln [ {ug|ug) (uzfus)... (un 1|un) |

\ P (k) < ¢ (k)
Y A
/ |

0.25} >

0.20r e} ®

k 0.15T ----------------- ;-"““““"0-‘
0.10} ®
0.057

0085 02 04 06 0.8 1.0
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Hybrid Wannier centers for QAH band

¢ (k) —Imln [ {ug|ug) (uzfus)... (un 1|un) |

_27r
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QAH: Hybrid WF centers y (k,)

¢ (k) —Imln [ {ug|ug) (uzfus)... (un 1|un) |

y (k)
\ @
: \

Average?

QAH oot
insulator
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Z, insulator: Hybrid WF centers y (k,)

y (k)

8r \ 1 A
6l Average?/././'—’i
ky .l | 2T
27 1 ¥
8.0 0.2 0.4 0.6 0.8 1.0

K

X
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Z, insulator: Hybrid WF centers y (k,)

4 Normal
¢ Kane-Mele
X tight-binding
model
y Z,-odd
K
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Polarization in 3D: Hybrid WFs again

(27, 27, 27)

(27, 27,0)

OkOOOOOOO

o © o ¢ ¢ € © ©] 0
o o © ¢ & & @

y
= K, (0,0,0) (271,0,0)
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Hybrid WF sheets

/=Cc —

Weak TI

/=c/2 —

(t,70)

(0,0) (,0)
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Hybrid WF sheets

. . =7
|

/=c/2 —

Strong TI

(t,70)

/=0 —

(0,0) (,0)
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3D Kane-Mele model

Spin-dependent
hopping
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Hybrid WF sheets
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First-principles calculation: Bi,Se,

a B . | b :
| e — @ Asit
o ¢ |7 2 A Bt
® [ ] V¥ Csite
o\ @ Y
X y
¢ X
Quintuple
layer
C C « .« SeT’
A @ o« @ Sel
B @& & Bil
C & Se2
@ Sel ol
¢ Se2 B @ @ €

H. Zhang et al., Nature Physics 5, 2009
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10

First-principles Bi,Se; Wannier centers

Blz 5(33 [k:t :0]

Wannier Center Position (bands 1 to 18)
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First-principles Bi,Se; Wannier centers
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e Wannier interpolation

o Electric polarization and anomalous Hall

e Chemical bonding and polar properties
— Covalent semiconductors and

polymers
—Perovskites
—Liquid water

e Hybrid Wannier functions and centers
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Wannier90 code
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Wannier90
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EXTRAS
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