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Band structure of crystals

In the previous two chapters we examined in detail the effects of crystal periodicity
and crystal symmetry on the eigenvalues and wavefunctions of the single-particle
equations. The models we used to illustrate these effects were artificial free-electron
models, where the only effect of the presence of the lattice is to impose the symmetry
restrictions on the eigenvalues and eigenfunctions. We also saw how a weak peri-
odic potential can split the degeneracies of certain eigenvalues at the Bragg planes
(the BZ edges). In realistic situations the potential is certainly not zero, as in the
free-electron model, nor is it necessarily weak. Our task here is to develop methods
for determining the solutions to the single-particle equations for realistic systems.
We will do this by discussing first the so called tight-binding approximation, which
takes us in the most natural way from electronic states that are characteristic of
atoms (atomic orbitals) to states that correspond to crystalline solids. We will then
discuss briefly more general methods for obtaining the band structure of solids,
whose application typically involves a large computational effort. Finally, we will
conclude the chapter by discussing the electronic structure of several representative
crystals, as obtained by elaborate computational methods; we will also attempt to
interpret these results in the context of the tight-binding approximation.

4.1 The tight-binding approximation

The simplest method for calculating band structures, both conceptually and com-
putationally, is the so called Tight-Binding Approximation (TBA), also referred to
as Linear Combination of Atomic Orbitals (LCAO). The latter term is actually used
in a wider sense, as we will explain below. The basic assumption in the TBA is
that we can use orbitals that are very similar to atomic states (i.e. wavefunctions
tightly bound to the atoms, hence the term “tight-binding”) as a basis for expanding
the crystal wavefunctions. We will deal with the general theory of the TBA first,
and then we will illustrate how it is applied through a couple of examples.
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122 4 Band structure of crystals

Suppose then that we start with a set of atomic wavefunctions

φl(r − ti ) (4.1)

where ti is the position of atom with label i in the PUC, and φl(r) is one of the
atomic states associated with this atom. The index l can take the usual values for
an atom, that is, the angular momentum character s, p, d, . . . . The state φl(r − ti )
is centered at the position of the atom with index i . It is assumed that we need as
many orbitals as the number of valence states in the atom (this is referred to as the
“minimal basis”).

Our first task is to construct states which can be used as the basis for expansion
of the crystal wavefunctions. These states must obey Bloch’s theorem, and we call
them χkli (r):

χkli (r) = 1√
N

�

R	
eik·R	

φl(r − ti − R	) (4.2)

with the summation running over all the N unit cells in the crystal (the vectors
R	), for a given pair of indices i (used to denote the position ti of the atom in the
PUC) and l (used for the type of orbital). We first verify that these states have Bloch
character:

χkli (r + R) = 1√
N

�

R	
eik·(R	−R)eik·Rφl((r + R) − ti − R	)

= eik·R 1√
N

�

R	
eik·(R	−R)φl(r − ti − (R	 − R))

= eik·R 1√
N

�

R		
eik·R		

φl(r − ti − R		) = eik·Rχkli (r) (4.3)

that is, Bloch’s theorem is satisfied for our choice of χkli (r), with the obvious
definition R		 = R	 − R, which is another lattice vector. Now we can expand the
crystal single-particle eigenstates in this basis:

ψ
(n)
k (r) =

�

l,i

c(n)
kliχkli (r) (4.4)

and all that remains to do is determine the coefficients c(n)
kli , assuming that the ψ

(n)
k (r)

are solutions to the appropriate single-particle equation:

Hspψ
(n)
k (r) = �kψ

(n)
k (r) ⇒

�

l,i

�

�χkmj |Hsp|χkli � − �
(n)
k �χkmj |χkli �




c(n)
kli = 0

(4.5)
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In the above equation we only need to consider matrix elements of states with the
same k index, because

�

ψ
(n)
k

�
�ψ

(n	)
k	

�

∼ δ(k − k	) (4.6)

where we are restricting the values of k, k	 to the IBZ. In Eq. (4.5) we have a secular
equation of size equal to the total number of atomic orbitals in the PUC: the sum is
over the number of different types of atoms and the number of orbitals associated
with each type of atom. This is exactly the number of solutions (bands) that we can
expect at each k-point. In order to solve this linear system we need to be able to
evaluate the following integrals:

�χkmj |χkli � = 1

N

�

R	,R		
eik·(R	−R		)�φm(r − t j − R		)|φl(r − ti − R	)�

= 1

N

�

R,R	
eik·R�φm(r − t j )|φl(r − ti − R)�

=
�

R

eik·R�φm(r − t j )|φl(r − ti − R)� (4.7)

where we have used the obvious definition R = R	 − R		, and we have eliminated
one of the sums over the lattice vectors with the factor 1/N , since in the last line of
Eq. (4.7) there is no explicit dependence on R	. We call the brackets in the last expres-
sion the “overlap matrix elements” between atomic states. In a similar fashion we
obtain:

�χkmj |Hsp|χkli � =
�

R

eik·R�φm(r − t j )|Hsp|φl(r − ti − R)� (4.8)

and we call the brackets on the right-hand side of Eq. (4.8) the “hamiltonian matrix
elements” between atomic states.

At this point we introduce an important approximation: in the spirit of the TBA,
we take the overlap matrix elements in Eq. (4.7) to be non-zero only for the same
orbitals on the same atom, i.e. only for m = l, j = i, R = 0, which is expressed by
the relation

�φm(r − t j )|φl(r − ti − R)� = δlmδi jδ(R) (4.9)

This is referred to as an “orthogonal basis”, since any overlap between differ-
ent orbitals on the same atom or orbitals on different atoms is taken to be zero.1

1 If the overlap between the φm (r) orbitals was strictly zero, there would be no interactions between nearest
neighbors; this is only a convenient approximation.
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Table 4.1. Equations that define the TBA model.

The first three equations are general, based on the atomic orbitals φl(r − ti − R) of type
l centered at an atom situated at the position ti of the unit cell with lattice vector R. The
last three correspond to an orthogonal basis of orbitals and nearest neighbor interactions
only, which define the on-site and hopping matrix elements of the hamiltonian.

χkli (r) = 1√
N

�

R eik·Rφl(r − ti − R) Bloch basis

ψ
(n)
k (r) = �

l,i c(n)
kliχkli (r) crystal states

�

l,i

�

�χkmj |Hsp|χkli � − �
(n)
k �χkmj |χkli �




c(n)
kli = 0 secular equation

�φm(r − t j )|φl(r − ti − R)� = δlmδi jδ(R) orthogonal orbitals

�φm(r − t j )|Hsp|φl(r − ti − R)� = δlmδi jδ(R)�l on-site elements

�φm(r − t j )|Hsp|φl(r − ti − R)� = δ((t j − ti − R) − dnn)Vlm,i j hopping elements

Similarly, we will take the hamiltonian matrix elements in Eq. (4.8) to be non-zero
only if the orbitals are on the same atom, i.e. for j = i , R = 0, which are referred
to as the “on-site energies”:

�φm(r − t j )|Hsp|φl(r − ti − R)� = δlmδi jδ(R)�l (4.10)

or, if the orbitals are on different atoms but situated at nearest neighbor sites, denoted
in general as dnn:

�φm(r − t j )|Hsp|φl(r − ti − R)� = δ((t j − ti − R) − dnn)Vlm,i j (4.11)

The Vlm,i j are also referred to as “hopping” matrix elements. When the nearest
neighbors are in the same unit cell, R can be zero; when they are across unit cells
R can be one of the primitive lattice vectors. The equations that define the TBA
model, with the approximation of an orthogonal basis and nearest neighbor inter-
actions only, are summarized in Table 4.1. Even with this drastic approximation,
we still need to calculate the values of the matrix elements that we have kept. The
parametrization of the hamiltonian matrix in an effort to produce a method with
quantitative capabilities has a long history, starting with the work of Harrison [37]
(see the Further reading section), and continues to be an active area of research. In
principle, these matrix elements can be calculated using one of the single-particle
hamiltonians we have discussed in chapter 2 (this approach is being actively pur-
sued as a means of performing fast and reliable electronic structure calculations
[38]). However, it is often more convenient to consider these matrix elements as
parameters, which are fitted to reproduce certain properties and can then be used to
calculate other properties of the solid (see, for instance, Refs. [39, 40]). We illustrate
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these concepts through two simple examples, the first concerning a 1D lattice, the
second a 2D lattice of atoms.

4.1.1 Example: 1D linear chain with s or p orbitals

We consider first the simplest possible case, a linear periodic chain of atoms. Our
system has only one type of atom and only one orbital associated with each atom.
The first task is to construct the basis for the crystal wavefunctions using the atomic
wavefunctions, as was done for the general case in Eq. (4.2). We notice that because
of the simplicity of the model, there are no summations over the indices l (there
is only one type of orbital for each atom) and i (there is only one atom per unit
cell). We keep the index l to identify different types of orbitals in our simple model.
Therefore, the basis for the crystal wavefunctions in this case will be simply

χkl(x) =
∞�

n=−∞
eikxφl(x − na) (4.12)

where we have further simplified the notation since we are dealing with a 1D
example, with the position vector r set equal to the position x on the 1D axis and the
reciprocal-space vector k set equal to k, while the lattice vectors R are given by na,
with a the lattice constant and n an integer. We will consider atomic wavefunctions
φl(x) which have either s-like or p-like character. The real parts of the wavefunction
χkl(x), l = s, p for a few values of k are shown in Fig. 4.1.

With these states, we can now attempt to calculate the band structure for this
model. The TBA with an orthogonal basis and nearest neighbor interactions only
implies that the overlap matrix elements are non-zero only for orbitals φl(x) on the
same atom, that is,

�φl(x)|φl(x − na)� = δn0 (4.13)

Similarly, nearest neighbor interactions require that the hamiltonian matrix elements
are non-zero only for orbitals that are on the same or neighboring atoms. If the
orbitals are on the same atom, then we define the hamiltonian matrix element
to be

�φl(x)|Hsp|φl(x − na)� = �lδn0 (4.14)

while if they are on neighboring atoms, that is n = ±1, we define the hamiltonian
matrix element to be

�φl(x)|Hsp|φl(x − na)� = tlδn±1 (4.15)
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Figure 4.1. Real parts of the crystal wavefunctions χkl(x) for k = 0, 0.25, 0.5, 0.75 and 1
(in units of π/a); the dashed lines represent the term cos(kx), which determines the value
of the phase factor when evaluated at the atomic sites x = na. Top five: s-like state; bottom
five: p-like state. The solid dots represent the atoms in the one-dimensional chain.

where �l is the on-site hamiltonian matrix element and tl is the hopping matrix
element. We expect this interaction between orbitals on neighboring atoms to con-
tribute to the cohesion of the solid, which implies that ts < 0 for s-like orbitals and
tp > 0 for p-like orbitals, as we explain in more detail below.
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We are now ready to use the χkl(x) functions as the basis to construct crystal
wavefunctions and with these calculate the single-particle energy eigenvalues, that
is, the band structure of the model. The crystal wavefunctions are obtained from
the general expression Eq. (4.4):

ψk(x) = ckχkl(x) (4.16)

where only the index k has survived due to the simplicity of the model (the index l
simply denotes the character of the atomic orbitals). Inserting these wavefunctions
into the secular equation, Eq. (4.5), we find that we have to solve a 1 × 1 matrix,
because we have only one orbital per atom and one atom per unit cell. With the
above definitions of the hamiltonian matrix elements between the atomic orbitals
φl’s, we obtain

[�χkl(x)|Hsp|χkl(x)� − �k�χkl(x)|χkl(x)�]ck = 0

⇒
�

n

eikna�φl(x)|Hsp|φl(x − na)� = �k

�

n

eikna�φl(x)|φl(x − na)�

⇒
�

n

eikna[�lδn0 + tlδn±1] = �k

�

n

eiknaδn0

The solution to the last equation is straightforward, giving the energy band for this
simple model:

1D chain : �k = �l + 2tl cos(ka) (4.17)

The behavior of the energy in the first BZ of the model, that is, for −π/a ≤ k ≤
π/a, is shown in Fig. 4.2 for the s and p orbitals. Since the coefficient ck is
undefined by the secular equation, we can take it to be unity, in which case the
crystal wavefunctions ψk(x) are the same as the basis functions χkl(x), which we
have already discussed above (see Fig. 4.1).

We elaborate briefly on the sign of the hopping matrix elements and the disper-
sion of the bands. It is assumed that the single-particle hamiltonian is spherically
symmetric. The s orbitals are spherically symmetric and have everywhere the same
sign,2 so that the overlap between s orbitals situated at nearest neighbor sites is
positive. In order to produce an attractive interaction between these orbitals, the
hopping matrix element must be negative:

ts ≡
�

φ∗
s (x)Hsp(x)φs(x − a)dx < 0.

2 We are concerned here with the sign implied only by the angular momentum character of the wavefunction and
not by the radial part; of the latter part, only the tail beyond the core is involved, as discussed in chapter 2.
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Figure 4.2. Single-particle energy eigenvalues �k in the first BZ (−π ≤ ka ≤ π ), for the
1D infinite chain model, with one atom per unit cell and one orbital per atom, in the
tight-binding approximation with nearest neighbor interactions. Left: s-like state; right:
p-like state. �s, �p are the on-site hamiltonian matrix elements and ts < 0 and tp > 0
are the hopping matrix elements. The sketches at the bottom of each panel illustrate the
arrangement of the orbitals in the 1D lattice with the positions of the atoms shown as
small black dots and the positive and negative lobes of the p orbitals shown in white and
black. Due to larger overlap we expect |ts | < |tp|, which leads to larger dispersion for the
p band.

We conclude that the negative sign of this matrix element is due to the hamiltonian,
since the product of the wavefunctions is positive. On the other hand, the p orbitals
have a positive and a negative lobe (see Appendix B); consequently, the overlap
between p orbitals situated at nearest neighbor sites and oriented in the same sense
as required by translational periodicity, is negative, because the positive lobe of
one is closest to the negative lobe of the next. Therefore, in order to produce an
attractive interaction between these orbitals, and since the hamiltonian is the same
as in the previous case, the hopping matrix element must be positive

tp ≡
�

φ∗
p(x)Hsp(x)φp(x − a)dx > 0.

Thus, the band structure for a 1D model with one s-like orbital per unit cell
will have a maximum at k = ±π/a and a minimum at k = 0, while that of
the p-like orbital will have the positions of the extrema reversed, as shown in
Fig. 4.2. Moreover, we expect that in general there will be larger overlap between
the neighboring p orbitals than between the s orbitals, due to the directed lobes of
the former, and therefore |tp| > |ts |, leading to larger dispersion for the p bands.

The generalization of the model to a two-dimensional square lattice with either
one s-like orbital or one p-like orbital per atom and one atom per unit cell is
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straightforward; the energy eigenvalues are given by

2D square : �k = �l + 2tl[cos(kxa) + cos(kya)] (4.18)

with the two-dimensional reciprocal-space vector defined as k = kx x̂ + ky ŷ. Simi-
larly, the generalization to the three-dimensional cubic lattice with either one s-like
orbital or one p-like orbital per atom and one atom per unit cell leads to the energy
eigenvalues:

3D cube : �k = �l + 2tl[cos(kxa) + cos(kya) + cos(kza)] (4.19)

where k = kx x̂ + ky ŷ + kz ẑ is the three-dimensional reciprocal-space vector. From
these expressions, we can immediately deduce that for this simple model the band
width of the energy eigenvalues is given by

W = 4dtl = 2ztl (4.20)

where d is the dimensionality of the model (d = 1, 2, 3 in the above examples),
or, equivalently, z is the number of nearest neighbors (z = 2, 4, 6 in the above
examples). We will use this fact in chapter 12, in relation to disorder-induced
localization of electronic states.

4.1.2 Example: 2D square lattice with s and p orbitals

We next consider a slightly more complex case, the two-dimensional square lattice
with one atom per unit cell. We assume that there are four atomic orbitals per atom,
one s-type and three p-type (px , py, pz). We work again within the orthogonal basis
of orbitals and nearest neighbor interactions only, as described by the equations of
Table 4.1. The overlap matrix elements in this case are

�φm(r)|φl(r − R)� = δlmδ(R)

⇒ �χkm |χkl� =
�

R

eik·R�φm(r)|φl(r − R)� =
�

R

eik·Rδlmδ(R)

= δlm (4.21)

while the hamiltonian matrix elements are

�φm(r)|Hsp|φl(r − R)� �= 0 only for [R = ±ax̂, ±aŷ, 0]

⇒ �χkm |Hsp|χkl� =
�

R

eik·R�φm(r)|Hsp|φl(r − R)�

�= 0 only for [R = ±ax̂, ±aŷ, 0] (4.22)

There are a number of different on-site and hopping matrix elements that are
generated from all the possible combinations of φm(r) and φl(r) in Eq. (4.22),
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which we define as follows:

�s = �φs(r)|Hsp|φs(r)�
�p = �φpx (r)|Hsp|φpx (r)� = �φpy (r)|Hsp|φpy (r)� = �φpz (r)|Hsp|φpz (r)�

Vss = �φs(r)|Hsp|φs(r ± ax̂)� = �φs(r)|Hsp|φs(r ± aŷ)�
Vsp = �φs(r)|Hsp|φpx (r − ax̂)� = −�φs(r)|Hsp|φpx (r + ax̂)�
Vsp = �φs(r)|Hsp|φpy (r − aŷ)� = −�φs(r)|Hsp|φpy (r + aŷ)�

Vppσ = �φpx (r)|Hsp|φpx (r ± ax̂)� = �φpy (r)|Hsp|φpy (r ± aŷ)�
Vppπ = �φpy (r)|Hsp|φpy (r ± ax̂)� = �φpx (r)|Hsp|φpx (r ± aŷ)�
Vppπ = �φpz (r)|Hsp|φpz (r ± ax̂)� = �φpz (r)|Hsp|φpz (r ± aŷ)� (4.23)

The hopping matrix elements are shown schematically in Fig. 4.3. By the symmetry
of the atomic orbitals we can deduce:

�φs(r)|Hsp|φpα
(r)� = 0 (α = x, y, z)

�φs(r)|Hsp|φpα
(r ± ax̂)� = 0 (α = y, z)

�φpα
(r)|Hsp|φpβ

(r ± ax̂)� = 0 (α, β = x, y, z; α �= β)

�φpα
(r)|Hsp|φpβ

(r)� = 0 (α,β = x, y, z; α �= β) (4.24)

as can be seen by the diagrams in Fig. 4.3, with the single-particle hamiltonian Hsp

assumed to contain only spherically symmetric terms.
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Figure 4.3. Schematic representation of hamiltonian matrix elements between s and
p states. Left: elements that do not vanish; right: elements that vanish due to sym-
metry. The two lobes of opposite sign of the px , py orbitals are shaded black and
white.
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Having defined all these matrix elements, we can calculate the matrix ele-
ments between crystal states that enter in the secular equation; we find for our
example

�χks(r)|Hsp|χks(r)� = �φs(r)|Hsp|φs(r)�
+ �φs(r)|Hsp|φs(r − ax̂)�eik·ax̂

+ �φs(r)|Hsp|φs(r + ax̂)�e−ik·ax̂

+ �φs(r)|Hsp|φs(r − aŷ)�eik·aŷ

+ �φs(r)|Hsp|φs(r + aŷ)�e−ik·aŷ

= �s + 2Vss
�

cos(kxa) + cos(kya)
�

(4.25)

and similarly for the rest of the matrix elements

�χks(r)|Hsp|χkpx (r)� = 2iVsp sin(kxa)

�χks(r)|Hsp|χkpy (r)� = 2iVsp sin(kya)

�χkpz (r)|Hsp|χkpz (r)� = �p + 2Vppπ

�

cos(kxa) + cos(kya)
�

�χkpx (r)|Hsp|χkpx (r)� = �p + 2Vppσ cos(kxa) + 2Vppπ cos(kya)

�χkpy (r)|Hsp|χkpy (r)� = �p + 2Vppπ cos(kxa) + 2Vppσ cos(kya) (4.26)

With these we can now construct the hamiltonian matrix for each value of k, and
obtain the eigenvalues and eigenfunctions by diagonalizing the secular equation.

For a quantitative discussion of the energy bands we will concentrate on certain
portions of the BZ, which correspond to high-symmetry points or directions in
the IBZ. Using the results of chapter 3 for the IBZ for the high-symmetry points
for this lattice, we conclude that we need to calculate the band structure along
� − � − X − Z − M − � − �. We find that at � = (kx , ky) = (0, 0), the matrix
is already diagonal and the eigenvalues are given by

�
(1)
� = �s + 4Vss, �

(2)
� = �p + 4Vppπ , �

(3)
� = �

(4)
� = �p + 2Vppπ + 2Vppσ (4.27)

The same is true for the point M = (1, 1)(π/a), where we get

�
(1)
M = �

(3)
M = �p − 2Vppπ − 2Vppσ , �

(2)
M = �p − 4Vppπ , �

(4)
M = �s − 4Vss (4.28)

Finally, at the point X = (1, 0)(π/a) we have another diagonal matrix with
eigenvalues

�
(1)
X = �p + 2Vppπ − 2Vppσ , �

(2)
X = �p, �

(3)
X = �s, �

(4)
X = �p − 2Vppπ + 2Vppσ

(4.29)

We have chosen the labels of those energy levels to match the band labels as dis-
played on p. 135 in Fig. 4.4(a). Notice that there are doubly degenerate states at
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Table 4.2. Matrix elements for the 2D square lattice with s, px , py, pz orbitals at
the high-symmetry points �, Z ,�.

In all cases, 0 < k < 1.

k � = (k, 0)(π/a) Z = (1, k)(π/a) � = (k, k)(π/a)

Ak 2Vss(cos(kπ ) + 1) 2Vss(cos(kπ ) − 1) 4Vss cos(kπ )
Bk 2iVsp sin(kπ ) 2iVsp sin(kπ ) 2

√
2iVsp sin(kπ )

Ck 2Vppσ cos(kπ ) + 2Vppπ 2Vppσ cos(kπ ) − 2Vppπ 2(Vppσ + Vppπ ) cos(kπ)
Dk 2Vppσ + 2Vppπ cos(kπ ) 2Vppπ cos(kπ ) − 2Vppσ 2(Vppσ + Vppπ ) cos(kπ)
Ek 2Vppπ (cos(kπ ) + 1) 2Vppπ (cos(kπ ) − 1) 4Vppπ cos(kπ )

� and at M , dictated by symmetry, that is, by the values of k at those points and
the form of the hopping matrix elements within the nearest neighbor approxima-
tion. For the three other high-symmetry points, �, Z , �, we obtain matrices of
the type







Ak Bk 0 0
B∗

k Ck 0 0
0 0 Dk 0
0 0 0 Ek







(4.30)

The matrices for � and Z can be put in this form straightforwardly, while the matrix
for � requires a change of basis in order to be brought into this form, namely

χk1(r) = 1√
2

�

χkpx (r) + χkpy (r)
�

χk2(r) = 1√
2

�

χkpx (r) − χkpy (r)
�

(4.31)

with the other two functions, χks(r) and χkpz (r), the same as before. The different
high-symmetry k-points result in the matrix elements tabulated in Table 4.2. These
matrices are then easily solved for the eigenvalues, giving:

�
(1,2)
k = 1

2

�

(Ak + Ck) ±
�

(Ak − Ck)2 + 4|Bk|2



, �
(3)
k = Dk, �

(4)
k = Ek (4.32)

We have then obtained the eigenvalues for all the high-symmetry points in the IBZ.
All that remains to be done is to determine the numerical values of the hamiltonian
matrix elements.

In principle, one can imagine calculating the values of the hamiltonian matrix
elements using one of the single-particle hamiltonians we discussed in chapter 2.
There is a question as to what exactly the appropriate atomic basis functions φl(r)
should be. States associated with free atoms are not a good choice, because in
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the solid the corresponding single-particle states are more compressed due to the
presence of other electrons nearby. One possibility then is to solve for atomic-like
states in fictitious atoms where the single-particle wavefunctions are compressed,
by imposing for instance a constraining potential (typically a harmonic well) in
addition to the Coulomb potential of the nucleus.

Alternatively, one can try to guess the values of the hamiltonian matrix so that they
reproduce some important features of the band structure, which can be determined
independently from experiment. Let us try to predict at least the sign and relative
magnitude of the hamiltonian matrix elements, in an attempt to guess a set of
reasonable values. First, the diagonal matrix elements �s, �p should have a difference
approximately equal to the energy difference of the corresponding eigenvalues
in the free atom. Notice that if we think of the atomic-like functions φl(r) as
corresponding to compressed wavefunctions then the corresponding eigenvalues �l

are not identical to those of the free atom, but we could expect the compression
of eigenfunctions to have similar effects on the different eigenvalues. Since the
energy scale is arbitrary, we can choose �p to be the zero of energy and �s to be
lower in energy by approximately the energy difference of the corresponding free-
atom states. The choice �s = −8 eV is representative of this energy difference for
several second row elements in the Periodic Table.

The matrix element Vss represents the interaction of two φs(r) states at a distance
a, the lattice constant of our model crystal. We expect this interaction to be attractive,
that is, to contribute to the cohesion of the solid. Therefore, by analogy to our earlier
analysis for the 1D model, we expect Vss to be negative. The choice Vss = −2 eV
for this interaction would be consistent with our choice of the difference between
�s and �p. Similarly, we expect the interaction of two p states to be attractive in
general. In the case of Vppσ we are assuming the neighboring φpx (r) states to be
oriented along the x axis in the same sense, that is, with positive lobes pointing in
the positive direction as required by translational periodicity. This implies that the
negative lobe of the state to the right is closest to the positive lobe of the state to
the left, so that the overlap between the two states will be negative. Because of
this negative overlap, Vppσ should be positive so that the net effect is an attractive
interaction, by analogy to what we discussed earlier for the 1D model. We expect
this matrix element to be roughly of the same magnitude as Vss and a little larger
in magnitude, to reflect the larger overlap between the directed lobes of p states.
A reasonable choice is Vppσ = +2.2 eV. In the case of Vppπ , the two p states are
parallel to each other at a distance a, so we expect the attractive interaction to be
a little weaker than in the previous case, when the orbitals were pointing toward
each other. A reasonable choice is Vppπ = −1.8 eV. Finally, we define Vsp to be
the matrix element with φpx (r) to the left of φs(r), so that the positive lobe of the
p orbital is closer to the s orbital and their overlap is positive. As a consequence



134 4 Band structure of crystals

Table 4.3. Values of the on-site and hopping matrix elements for the band
structure of the 2D square lattice with an orthogonal s and p basis and

nearest neighbor interactions.

�p is taken to be zero in all cases. All values are in electronvolts. (a)–(f) refer to parts in
Fig. 4.4.

(a) (b) (c) (d) (e) (f)

�s −8.0 −16.0 −8.0 −8.0 −8.0 −8.0
Vss −2.0 −2.0 −4.0 −2.0 −2.0 −2.0
Vppσ +2.2 +2.2 +2.2 +4.4 +2.2 +2.2
Vppπ −1.8 −1.8 −1.8 −1.8 −3.6 −1.8
Vsp −2.1 −2.1 −2.1 −2.1 −2.1 −4.2

of this definition, this matrix element, which also contributes to attraction, must
be negative; we expect its magnitude to be somewhere between the Vss and Vppσ

matrix elements. A reasonable choice is Vsp = −2.1 eV. With these choices, the
model yields the band structure shown in Fig. 4.4(a). Notice that in addition to the
doubly degenerate states at � and M which are expected from symmetry, there is
also a doubly degenerate state at X ; this is purely accidental, due to our choice of
parameters, as the following discussion also illustrates.

In order to elucidate the influence of the various matrix elements on the band
structure we also show in Fig. 4.4 a number of other choices for their values. To
keep the comparisons simple, in each of the other choices we increase one of the
matrix elements by a factor of 2 relative to its value in the original set and keep all
other values the same; the values for each case are given explicitly in Table 4.3.
The corresponding Figs. 4.4 (b)–(f ) provide insight into the origin of the bands. To
facilitate the comparison we label the bands 1–4, according to their order in energy
near �.

Comparing Figs. 4.4 (a) and (b) we conclude that band 1 arises from interaction
of the s orbitals in neighboring atoms: a decrease of the corresponding eigenvalue
�s from −8 to −16 eV splits this band off from the rest, by lowering its energy
throughout the BZ by 8 eV, without affecting the other three bands, except for some
minor changes in the neighborhood of M where bands 1 and 3 were originally
degenerate. Since in plot (b) band 1 has split from the rest, now bands 3 and 4 have
become degenerate at M , because there must be a doubly degenerate eigenvalue
at M independent of the values of the parameters, as we found in Eq. (4.28). An
increase of the magnitude of Vss by a factor of 2, which leads to the band structure of
plot (c), has as a major effect the increase of the dispersion of band 1; this confirms
that band 1 is primarily due to the interaction between s orbitals. There are also some
changes in band 4, which at M depends on the value of Vss , as found in Eq. (4.28).
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Figure 4.4. The band structure of the 2D square lattice with one atom per unit cell and an
orthogonal basis consisting of s, px , py, pz orbitals with nearest neighbor interactions. The
values of the parameters for the six different plots are given in Table 4.3.
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Increasing the magnitude of Vppσ by a factor of 2 affects significantly bands 3
and 4, somewhat less band 1, and not at all band 2, as seen from the comparison
between plots (a) and (d). This indicates that bands 3 and 4 are essentially related
to σ interactions between the px and py orbitals on neighboring atoms. This is
also supported by plot (e), in which increasing the magnitude of Vppπ by a factor
of 2 has as a major effect the dramatic increase of the dispersion of band 2; this
leads to the conclusion that band 2 arises from π -bonding interactions between
pz orbitals. The other bands are also affected by this change in the value of Vppπ ,
because they contain π -bonding interactions between px and py orbitals, but the
effect is not as dramatic, since in the other bands there are also contributions from
σ -bonding interactions, which lessen the importance of the Vppπ matrix element.
Finally, increasing the magnitude of Vsp by a factor of 2 affects all bands except
band 2, as seen in plot (f); this is because all other bands except band 2 involve
orbitals s and p interacting through σ bonds.

Two other features of the band structure are also worth mentioning: First, that
bands 1 and 3 in Figs. 4.4(a) and (b) are nearly parallel to each other throughout
the BZ. This is an accident related to our choice of parameters for these two plots,
as the other four plots prove. This type of behavior has important consequences for
the optical properties, as discussed in chapter 5, particularly when the lower band
is occupied (it lies entirely below the Fermi level) and the upper band is empty
(it lies entirely above the Fermi level). The second interesting feature is that the
lowest band is parabolic near �, in all plots of Fig. 4.4 except for (f). The parabolic
nature of the lowest band near the minimum is also a feature of the simple 1D
model discussed in section 4.1.1, as well as of the free-electron model discussed in
chapter 3. In all these cases, the lowest band near the minimum has essentially pure
s character, and its dispersion is dictated by the periodicity of the lattice rather than
interaction with other bands. Only for the choice of parameters in plot (f) is the
parabolic behavior near the minimum altered; in this case the interaction between s
and p orbitals (Vsp) is much larger than the interaction between s orbitals, so that the
nature of the band near the minimum is not pure s any longer but involves also the p
states. This last situation is unusual. Far more common is the behavior exemplified
by plots (a) – (d), where the nature of the lowest band is clearly associated with
the atomic orbitals with the lowest energy. This is demonstrated in more realistic
examples later in this chapter.

4.1.3 Generalizations of the TBA

The examples we have discussed above are the simplest version of the TBA, with
only orthogonal basis functions and nearest neighbor interactions, as defined in
Eq. (4.21) and Eq. (4.22), respectively. We also encountered matrix elements in


