HOMEWORK SET 06 Theory of Condensed Matter UFV/TKL1/99 lecture by Martin Gmitra Winter Semester 2024, room KNKTFA

1. [2 points] In one-dimensional chain of identical atoms separated by the distance a there are $N_{\rm modes}$ independent vibration modes calculated within the first Brillouin zone

 $N_{\text{modes}} = \int_{-\pi/a}^{\pi/a} dq \left(\frac{L}{2\pi}\right) = \frac{L}{a} = N_{\text{atoms}}$, meaning that we have one mode for each atom

in the lattice. How many modes we will have in 3D lattice with one atom per unit cell?

- 2. [2 points] Calculate density of states for the phonon modes as a function of the modes frequency ω for one-dimensional chain with one atom in the unit cell considering spring constants between nearest neighbors only as discussed on lecture.
- 3. In long wave limit, where the wave-length $\ell \gg d$ (much larger then the lattice constant d) the $q = 2\pi/\ell \ll 2\pi/d$ and $qd \ll 1$ the q is small meaning close to the Brillouin zone center. Calculate the sound velocities $v = d\omega/dq$ for the acoustic modes in one-dimensional linear chain
 - a) [1 point] with one atom in the basis
 - b) [2 points] with two different atoms in the basis
- 4. [*1 point*] Sketch density of states for diatomic one-dimensional linear chain and identify the positions of van Hove singularities for both the acoustic and optical branches.
- 5. [*2 points*] Consider one-dimensional chain with one atom in unit cell. Show that when higherorder spring constants K_j acting between other then nearest neighbors can not be ignored,

the dispersion relation reads
$$\,\omega(q)^2=rac{2}{M}\sum_{j=1}^\infty K_j(1-\cos(jqd)).$$

- 6. Below is shown phonon dispersion for a fcc crystal along the high symmetry lines in the first Brillouin zone. Assume a lattice constant a = 2 Å
 - a) [1 extra point] How many atoms are in the primitive unit cell of the crystal?
 - b) [2 extra points] Estimate speed of sounds for the Δ , Σ and Λ directions.
 - c) [1 extra point] What is the shortest phonon wavelength possible in this crystal?
 - d) [*3 extra points*] Which of these phonon states would be more than 30% occupied at 300 K?

HOMEWORK SET 06 Theory of Condensed Matter UFV/TKL1/99 lecture by Martin Gmitra Winter Semester 2024, room KNKTFA

