
smaller than the amplitude of the potential A and, thus, the electron must be
confined near the bottom of the cosine-type potential. This means that only
the motion near ��0 needs to be considered. The potential in equation (5.3) is
then approximated as

�cos2���(1�2�2),

since � is small. The resulting Schrödinger equation is reduced to

�(���2��2)��0.

The potential in this equation is proportional to the square of the coordinate
�, thereby representing the motion of a harmonic oscillator. As discussed in
Section 4.6, its energy eigenvalue is given by

��� �� (n�0, 1, 2, 3, . . .),

where � represents the angular frequency characterizing the oscillation of the
electron at the bottom of the potential. The energy eigenvalue obtained under
the two extreme cases is illustrated schematically in Fig. 5.1. In case (1), the
electron can propagate freely in space, since the amplitude of the potential is
negligibly small relative to the kinetic energy of the electron. The energy eigen-
value is given by equation (2.5) and forms a continuous band, as discussed in
Chapter 2. In contrast, the electron is captured in the potential well in case (2).
The discrete energy level is given by that of a harmonic oscillator. In this
chapter, we deal with the situation where the energy of the electron is compar-
able to the amplitude of the potential or E�A. We will learn that energy gaps
open up within the continuous band, as schematically illustrated in Fig. 5.1.

5.3 Bloch theorem

We study in this section the Bloch theorem and prove it by using a one-dimen-
sional periodic lattice consisting of N monatomic ions with lattice constant a.
The ionic potential located at the origin x�0 is defined in the range
�a /2�x�a /2 and denoted as V(x). The ionic potential located at its nearest
neighbor position x�a is then expressed as V(x�a) in the range a /2�x�3/2a.
Because of its identical nature, V(x)�V(x�a) holds. In the same manner, we
obtain

V(x)�V(x�a)�V(x�2a)� · · · �V(x�(N�1)a), (5.4)

�n �
1
2�

d 2�

d� 2
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where V(x�ma) is defined in the range (�a /2)�ma�x�(a /2)�ma (m�0, 1,
2, . . ., N�1).

The periodic boundary condition is imposed in such a way that the ion at
x�0 coincides with that at the position x�Na. This forms a ring of length Na,
onto which N lattice points are evenly distributed with the lattice constant a.
Now we have the relation

V(x)�V(x�Na), (5.5)

where the symbol � emphasizes that both V(x) and V(x�Na) refer to the same
potential. The Schrödinger equation in each unit cell can be expressed as

�V(x)� (x)�E� (x)

�V(x�a)�(x�a)�E� (x�a)

�

�V(x�(N�1)a)�(x� (N�1)a)�E�(x�(N�1)a).
(5.6)

Note that ionic potentials periodically arranged with the lattice constant a are
identical. For example, the identity of the wave functions � (x) with � (x�a)
means that they should possess the same energy eigenvalue E but that �(x) can
differ from � (x�a) by a phase factor. They are therefore written as

�(x�a)���(x) ����1. (5.7)

By repeating this process N times to reach the N-th unit cell, we finally obtain
the relation

�(x�Na)��N� (x).

However, the N-th one is nothing but the cell at x�0 and, hence, � (x�Na)�

� (x) holds. This results in

�N�1,

which is solved as

��exp ,

where n is an integer in the range of 0 up to N�1.

�2�ni
N �

�� �2

2m � d 2� (x � (N � 1)a)
dx2

�� �2

2m � d 2� (x � a)
dx2

�� �2

2m � d 2� (x)
dx2
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The Bloch theorem in a one-dimensional lattice is stated as follows. The wave
function � (x) for an electron propagating in the periodic potential with the
period a can be expressed as

� (x)�exp u(x), (5.8)

where an arbitrary function u(x) is a periodic function of a and satisfies the
relation

u(x�ma)�u(x), (5.9)

with a positive integer m. In order to prove the Bloch theorem, we first assume
equation (5.8) to hold. Then, we can prove below that the function u(x) must
satisfy equation (5.9). Let the variable x in equation (5.8) to be replaced by x�

ma. We have

� (x�ma)�exp u(x�ma)

�exp exp u(x�ma)

��m exp u(x�ma). (5.10)

The relation ��exp (2�ni /N) obtained above is inserted to reach the last line.
If we apply equation (5.7) m times to � (x), then we get the relation
� (x�ma)��m�(x). By inserting equation (5.8) into it, we have

� (x�ma)��m�(x)��m exp u(x). (5.11)

A comparison of equations (5.10) and (5.11) immediately leads us to conclude
that an arbitrary function �(x) must satisfy equation (5.9).

A quantity of (2�/Na)n or (2�/L)n in equation (5.8) may be replaced by a
new variable k, since it is of the same form as the wave number defined by equa-
tion (2.9) for free electrons. By this replacement, the wave function (5.8) is sim-
plified to � (x)�exp(ikx)u(x), allowing us to envisage � (x) as the plane wave
exp(ikx) modulated by the periodic function u(x). Here it is important to keep
in mind that the variable k of the free electron was originally introduced as the
wave number of the plane wave in free space, whereas the new variable above
appeared in relation to the periodicity of the lattice. Before discussing its

�2�nix
Na �

�2�nix
Na �

�2�nix
Na ��2�mni

N �

�2�ni(x � ma)
Na �

�2�inx
Na �
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unique nature, we extend the Bloch theorem to a three-dimensional periodic
lattice.

Let us assume the periodic potential in a crystal where the position of each
ion is specified by the lattice vector l�lxax�lyay�lzaz (lx, ly, lz�integers) in
equation (4.7). The wave function �(r) of the electron in the periodic potential
can be expressed in the form

�k(r)�exp(i k·r)uk(r), (5.12)

where uk(r) satisfies the relation

uk(r�l)�uk(r). (5.13)

Here the vector k is of the same form as the wave vector in equation (2.11) for
the free electron. This is called the Bloch theorem. The wave function expressed
by equation (5.12) is called the Bloch wave or Bloch state.

The Bloch theorem is very important. By applying this theorem, the wave
function in a macroscopic crystal containing as many atoms as the Avogadro
number can be determined by solving the Schrödinger equation into which
information from just one unit cell is inserted. This unique advantage stems
from the fact that the wave function everywhere in a crystal is automatically
decided, once uk(r) in the unit cell, say, at l�0 is specified. Therefore, the Bloch
theorem is responsible for the successful development of band structure calcu-
lations for a ‘macroscopic’ crystal, which we will study in Chapter 8. We show,
in Fig. 5.2, an example of the Bloch wave in a one-dimensional system, where
uk(x) is positioned at the center of the unit cell. Once the function uk(r) in the
unit cell is given, the wave function extending over the crystal is completely
decided by the product of the plane wave ei k·r and the periodic function uk(r),
as shown in Fig. 5.2(b).

It is of great importance for the reader to recognize how physical quantities
associated with the wave vector k in the Bloch wave differ from those derived
from the free-electron model. For example, �k is found to be the eigenvalue of
the momentum operator �i�� in the free-electron model (see equation (2.14)).
If it is operated to the Bloch wave function (5.12), one can easily find that �k
is no longer its eigenvalue. This is because the ionic potential exerts a force on
the electron through the function uk(r).

To study further the characteristic features of the Bloch wave function, we
can rewrite equation (5.12) in the following form:

�k(r�l )�exp(i k·l)�k(r). (5.14)

As discussed in Section 4.2, the reciprocal lattice vector g is defined so as
to satisfy the relation exp(�ig·l)�1, where l is the lattice vector defined by
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equation (4.7). Keeping this in mind, we can replace the wave vector k of the
Bloch wave by the wave vector k�k��g:

�k(r�l)�exp(i k·l)�k(r)

�exp(�ig·l) exp(i k�·l)�k(r)

�exp(i k�·l)�k(r). (5.15)

A comparison of equations (5.14) and (5.15) tells us that the Bloch state of the
wave vector k is equally describable in terms of the wave vector k¢ different
from it by the reciprocal lattice vector g.

This is a property unique to the Bloch wave or Bloch electron. Multiply both
sides of k�k��g by �. Then, it is viewed as representing the momentum con-
servation law of the Bloch electron, indicating that the Bloch electron
exchanges its momentum with the lattice by the amount ��g. What does ��g
mean? It is assigned to an infinite array of identical lattice planes specified by
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Figure 5.2. (a) The periodic function uk(x) centered at the origin of the unit cell in the
range �a/2�x�a/2. (b) The Bloch wave constructed by using the function shown in
(a). Only the real part is shown. The function uk(x) is placed at every origin of the unit
cell and modulated by the plane wave exp(ikx). A solid circle represents the ion at the 

center of each unit cell.



the reciprocal lattice vector g and has nothing to do with phonons. It may
merely refer to the motion of the lattice as a whole. Thus, the momentum �k
of the Bloch wave cannot be uniquely determined as the momentum inherent
to an electron but involves arbitrariness associated with a whole motion of the
lattice. This is the reason why the momentum �k is often called the crystal
momentum of the Bloch wave.

Let us consider a special case where the magnitude of the periodic potential
is reduced infinitesimally small. We call it the periodic empty-lattice, under
which the electron should resume the free-electron band structure but the peri-
odicity of the lattice and, hence, the concept of the Bloch wave remains valid.
This is a hypothetical model but helps the reader to gain further insight into
the role of the periodic potential. The free-electron wave function �k(r)�exp
(i k·r) must be its eigenfunction but still obeys the Bloch theorem. The wave
function may be rewritten as

�k(r)�exp[i(k�g)·r]exp(�ig·r)

�exp(i k�·r)u
�g(r), (5.16)

where k��k�g and u
�g(r)�exp(�ig·r). Equation (5.16) satisfies the Bloch

theorem, since u
�g(r�l)�exp(�ig·(r�l)]�exp(�ig·r)�u

�g(r). It is now inter-
esting to examine the E–k relation of the Bloch electron in the periodic empty-
lattice potential. By reflecting the periodic nature of the lattice, the Bloch state
of the wave vector k should be identical to that of the wave vector k�g but yet
the energy eigenvalue is given by the free-electron value (see Exercise 5.2).

A one-dimensional monatomic lattice with lattice constant a is assumed. In
this particular case, the reciprocal lattice vector becomes multiples of 2�/a.
Since the Bloch states k and k�g possess the same eigenstate, we can always
transfer the Bloch state of any wave vector into the region ��/a�kx��/a.
This is called the reduction to the first Brillouin zone. We will learn more about
the operation of the reduction in Section 5.11. This unique property in recip-
rocal space is caused by the periodic array of ions in a crystal and has already
been discussed in relation to lattice vibrations in Section 4.4.

5.4 Kronig–Penney model

By making full use of the Bloch theorem, we can study the effect of the peri-
odic potential on the E–k relation of the conduction electron. For this purpose,
the Kronig–Penney model is known to be quite instructive. The model assumes
a periodic square-well potential in one-dimensional space, as indicated in Fig.
5.3. The Schrödinger equation in one-dimensional space is generally written as
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