Crystal structure

Introduction

We often think of crystals as the gemstones we give to a loved one, but most
metals (e.g. copper, aluminum, iron) that we encounter daily are common
crystals too. In this chapter, we will examine the structure of crystalline matter
in which particles are arranged in a repeating pattern that extends over very
long distances. This long-range order is formally described by identifying
small local groupings of particles, known as a basis set, that are identically
affixed to the sites of a regularly repeating space lattice. As it happens, most
crystals found in nature assume one of a limited set of special space lattices
known as Bravais lattices. These lattices are special by virtue of their unique
symmetry properties wherein only discrete translations and rotations allow the
lattice to appear unchanged. Chief among these Bravais lattices are the cubic
and hexagonal lattice structures that appear most frequently in nature. We
focus extra attention on both to provide a useful introduction to coordination
properties and packing fractions.

1.1 Crystal lattice
T

Crystals have a decided advantage because of the inherent repeating pattern
present in their structure. In an ideal (perfect) crystal, this repeating pattern
extends indefinitely. However, for real crystals found in nature, the pattern is
often interrupted by imperfections known as defects that can include vacancies,
in which a single particle is missing, and dislocations in which the repeating
pattern is offset. These defects are important for some crystal properties, but
for now we restrict ourselves to only ideal structures. Besides, even in real
crystals large regions containing substantial numbers of particles exist in which
a perfectly repeating pattern is maintained.

Let’s start with an imaginary, two-dimensional example of a crystal that
contains two types of particles (say, large A atoms and small B atoms) as
illustrated in Fig. 1.1. It is clear from inspection that this collection of particles
displays a well-ordered repeating pattern of A and B atoms that can be
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The repeating pattern of atoms A (gray circles) and B (black circles) is mapped onto a lattice (dashed
lines) that is defined by two lattice vectors (d; and ). The pattern of atoms can be viewed as the
result of attaching tiles (hashed area that contains a total of two A atoms and two B atoms) onto
the lattice.

arranged neatly on the square grid that is superimposed. How can we best
describe this repeating pattern? We could simply establish an arbitrary origin
and then list the position vectors for every particle of each type. But that would
be unnecessarily cumbersome given that there is an obvious repeating pattern.
Instead, consider the square grid. The points formed by the intersections of
these grid lines can be referenced from any other point by any combination of
translations of the form:

T = ha, + ka,, (1.1)

where £ and k are the complete set of integer numbers. The complete set of
these translations define what is known as a space lattice — an abstract set of
points in space that convey the inherent repeating pattern behind the crystal’s
structure.

In Fig. 1.1, we see that some of the larger A atoms are located directly on the
points of the space lattice (grid) and their positions can be referenced by the set
of translations in Eq. (1.1) alone. But other A atoms, as well as the smaller
B atoms, reside off the lattice. To completely describe the particle positions of
all the atoms of the crystal, we must combine with the space lattice a small
subset of atoms (known as a basis) that are repeatedly attached to each lattice
site so as to produce the entire structure. This is much like flooring your
kitchen with linoleum tiles. Imagine that each linoleum tile has a pattern
stamped onto it corresponding to one of the squares in Fig. 1.1. This particular
tile would have two of each type of atom: a complete A atom at the center, one-
quarter of an A atom at each corner, and one-half of a B atom at the middle of
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each side. When each such tile is positioned with its lower left-hand corner
coincident with a space lattice point, the completed assembly of tiles would
reproduce the crystal structure of Fig. 1.1 as a whole.

1.1.1 Basis set

Thus, to describe the entire structure of a crystal we combine a space lattice,
described by the translations of Eq. (1.1), with a set of basis vectors (referenced
to, say, the lower left-hand corner of the tile) to describe the contents of each tile:

R = xidy + yida, (1.2)
where x; and y; are fractions. For the particular tile illustrated in Fig. 1.1, the
basis vectors would include:

o 1 1

single central A atom: R; = 5[1'1 + 552
R, = 0d, + 0d,
Ry = 1d; + 0d
four corner A atoms: { - ‘_{1 + iz of an A atom each
Ry = 0a; + la,
ié5 = 1d, + 14,
R6 = %51 + 052
jé7 = 0d; + %6_1'2

Ry = ld, +1a,

four side B atoms: of a B atom each

Eg = %6_1'1 + ld,
This is still more cumbersome than necessary. Consider, as shown in Fig.
1.2, an alternative space lattice composed of diagonal grid lines. Notice that we
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The same pattern of two atoms found in Fig. 1.1 are referenced to an alternative, diagonal lattice
with a corresponding redefinition of the tile (hashed area) to contain only one each of each atom.
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have not repositioned any of the particles, only redefined the space lattice we
choose to associate with them. Our diamond-shaped tiles now contain only one
atom of each type. This sort of tile is known as a primitive cell. It is the
smallest-sized tile that can be used together with the space lattice to fill the
space with our desired repeating pattern. Our basis set now requires only two
vectors:

A atom: R, = 0d, + 0d,

(1.3)

o 1, 1,
B atom: R, = Eal +§a2.

Note here that the entire A atom is now being associated with the tile (even
though three quarters of it sticks outside). Tiles affixed to neighboring lattice
sites will then provide the other three A atoms.

1.1.2 Primitive cells

Primitive cells can be identified by several properties. A primitive cell:

(1)
)

contains only one lattice point,

has the smallest size (area, 4 = |d; X d|) that can just fill the space by
repetition, and

has a basis set containing only one molecular unit (in our case: AB).

®)

Primitive cells are not unique. As shown in Fig. 1.3, yet another alternative
space lattice has been chosen to describe our AB system. The shaded cell
shown has the same smallest size area as our diamonds in Fig. 1.2 and contains
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The same pattern of two atoms found in Fig. 1.1 and Fig. 1.2 are referenced to yet another
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alternative lattice with an alternative primitive cell (hashed area).
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1.1 Crystal lattice

(b)

Wigner—Seitz
primitive cells

Steps in construction of the Wigner—Seitz primitive cell. (a) Lines are first drawn from a central
lattice site to all neighboring sites (heavy dashed lines). (b) Each of these lines is then bisected
by a perpendicular plane (heavy solid lines) and the volume enclosed becomes the Wigner—Seitz
cell. (c) The cell is capable of tiling the entire space and is a primitive cell because it contains
one lattice site (at its center).

one of each atom type. However, the basis vectors for this situation would need
to be revised as:

A atom: R, = 0d, + 0d,
I (1.4)
B atom: R, = 0a; +5a2.

Wigner—Seitz primitive cell

Although there are many choices for the primitive cell as illustrated above,
there is one alternative known as the Wigner—Seitz cell, which will have special
relevance later on in our discussions of solid state physics. Construction of
the Wigner—Seitz cell is illustrated in a series of panels in Fig. 1.4 and begins
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by drawing lines from any arbitrary lattice site to neighboring lattice sites
(see Fig. 1.4a). Next, each line is bisected by a perpendicular line (or plane in
the case of a 3D lattice), as illustrated in Fig. 1.4b. The interior region bounded
by these perpendicular lines is then the Wigner—Seitz cell. The cell is seen to be
primitive because it contains just one lattice point (namely, the one at its
center) and can successfully tile the entire space.

1.2 Symmetry

Aside from its repeating pattern, the space lattice possesses another important
characteristic known as symmetry. Consider yourself as a (very small) observer
located on one of the A atoms in Fig. 1.5. When you look around, you observe
nearby B atoms (to the north, south, east and west) and nearby A atoms (to the
NE, NW, SE and SW). If you now move to another point of the space lattice
(atop another A atom), by a translation, T = hd, + ka», you will experience no
sense that your surroundings have changed in any way. In this way the space
lattice is said to possess translational symmetry — if the entire space lattice is
shifted by any of the translation vectors that describe it, the resulting pattern is
unchanged in any observable manner.

In addition to this translational symmetry, which all space lattices possess by
virtue of their repeating nature, there are other important symmetry operations
that define different space lattices. For example, consider yourself again atop
an A atom in Fig. 1.5. If you rotate by 90° you again see the same surroundings
as before you rotated. The space lattice is said to possess a certain rotational
symmetry. Note that this symmetry appears only for specific angles of rotation in

An observer situated on a lattice undergoes a translation to any other lattice site and finds his/her
surroundings unaltered. The system of particles is then said to possess translational symmetry.
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(a) Ovblique (b) Square (c) Rectangular (d) BC Rectangular
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The complete set of Bravais lattices (nets) in two dimensions. In addition to the oblique,

there are four other lattices possessing distinct symmetry properties. Of these, only the BC
rectangular is a conventional lattice. Rotational symmetries include 2, 3 and 4-fold but do not allow
for 5-fold symmetries.

the crystal. For example, a rotation by 45° on the lattice of Fig. 1.5 will not return
your surroundings to their original state. Only rotations by a multiple of 90°
will do this. Because there are four 90° increments in a full circle, this particular
case of rotational symmetry is referred to as ‘4-fold’ rotational symmetry.

For the two-dimensional situations we are currently discussing, there are an
unlimited number of possible space lattices owing to the fact that any lengths of
the two lattice vectors (d; and d;) can be chosen as well as any angle between
them. However, these generic, oblique lattices like that shown in Fig. 1.6a will
only have 2-fold rotational symmetry unless special restrictions are applied to
the lattice vectors. Special lattices, known as Bravais lattices, can be obtained
with higher degrees of rotational symmetry by placing restrictions on the lengths
and angles between the two lattice vectors d; and d,. For 2D, there are just four
other lattices that can be constructed with other than 2-fold symmetry. These are
shown in Fig. 1.6. Note that 5-fold symmetry is not possible. As one can see in
Fig. 1.6, primitive cells based on pentagons do not correctly fill space.

Additional symmetry operations under which certain space lattices will
return to their original situation include:

(1) Mirror symmetry: reflection about a plane.
(2) Inversion symmetry: rotation by 180° about an axis followed by reflection
through a plane normal to the rotation axis.
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(3) Glide symmetry: a combination of reflection and translation.
(4) Screw symmetry: a combination of rotation and translation.

1.2.1 Conventional cells

One of the lattices presented in Fig. 1.6 is not a primitive lattice. The lattice
shown in Fig. 1.6d has lattice vectors identical with those in Fig. 1.6¢, but has
an additional lattice point at the center of the cell. In this instance, the two
lattice vectors mark off a conventional unit cell (non-primitive) referred to as a
‘body-centered’ (BC) rectangular lattice. Conventional cells are often intro-
duced as an alternative to their primitive lattices as they afford a better
visualization of the geometrical structure.

1.3 Bravais lattices
|

Our discussion of 2D lattices has laid much of the groundwork for discussing
lattices in three dimensions. The structures of 3D crystals are again defined by
the combination of a space lattice, described by a set of translation vectors:

T = hd, + ki + 1d3, (1.5)

where A, k and / are the complete set of integers, and an appropriate set of basis
vectors:

I_é[ = x,—Zil —i—y,—Ziz —|—z,-(_1'37 (16)

that locate the contents of each unit cell in relation to any given lattice point.
The volume of a 3D cell is now given by

V:|Zz'1-Zz'2><Zi3| (17)

and is smallest for any of the possible primitive cells that can be constructed.

While any sort of generic lattice could be created with appropriate choice of
the lengths of the three lattice vectors (d;, d, and d3) as well as the angle
between them, symmetry considerations lead to only 13 other, special or
Bravais lattices. All 14 lattice types are illustrated in Fig. 1.7. The generic
lattice (with arbitrary lengths and angles between d, @, and d3) is known as
the triclinic, and the other 13 are grouped into six sub-categories based on how
the lattice vectors are restricted to produce a unique symmetry: monoclinic,
orthorhombic, tetragonal, cubic, trigonal and hexagonal. In addition to the
primitive cell forms, some of these categories also contain conventional cell
forms. These are non-primitive cells in which more than one lattice point is
included in the cell. As the majority of crystals found in nature assume either a
cubic or a hexagonal lattice structure, we focus next on the detailed properties
of these two lattice types.
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The simple cubic lattice. The ideal packing fraction is determined by imagining that balloons at each
lattice site are inflated to just touch one another, as shown in the right-hand figure.

1.3.1 Cubic lattices

The cell of a simple cubic (SC) lattice, shown in Fig. 1.8, is a primitive cell
because it contains just one lattice site. To see this, you may need to pretend
that the lattice points in each corner of the cube are actually finite-sized balls.
One-eighth of a ball at each corner resides inside the cube while the remaining
seven-eighths resides in other adjacent cells. Thus, in spite of it having eight
corners, any given cell contains just one total lattice site. Because the lengths
of the three lattice vectors are equivalent and orthogonal, the cell volume is
simply V = |d@, - @, x @3] = a.

This simple cubic structure is to be contrasted with the two conventional cell
structures of the body-centered cubic (BCC) and face-centered cubic (FCC)
types. The body-centered cubic (BCC) has two lattice points per cell (one in
the center and one-eighth in each of eight corners) and the face-centered cubic
(FCC) has four lattice points per cell (one-eighth in each of the corners and
one-half in each of six faces). While the FCC and BCC cells are conventional,
each can alternatively be described by corresponding primitive cells affixed to
a non-cubic lattice. Since a primitive cell must contain only one lattice point, a
direct way of constructing these primitive cells would be to assign an origin to
any one of the lattice sites, and choose lattice vectors (@), @, and ;) that
correspond to the shortest distance to three neighboring lattice sites which are
oriented so as to trace out a thombohedral with the minimum volume. The
result is shown in Fig. 1.9 for both situations. With a little effort, one can show
(Ex. 1 and Ex. 2) that the volumes of these two primitive cells are a® /2 for the
BCC and @’ /4 for the FCC, as expected.

Packing fractions

Another important property of any structural arrangement of particles is the
packing fraction. The ideal packing fraction is a measure of how much space is
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Lattice vectors for the corresponding primitive lattice of both the BC cubic and FC cubic
conventional lattices.

occupied by identical spherical atoms when they are placed on the lattice sites
such that they just touch one another. Imagine that inflatable balloons are
located at the corners of the cube in Fig. 1.8 and are inflated at equal rates until
they just begin to touch. Each balloon will have a radius equal to half the lattice
spacing (a/2) and one-eighth of its volume will reside inside the cube. Hence
the total space inside the cube that is physically occupied by the inflated
balloons is 4m(a/2)* /3 = 0.5244%, and the fraction of occupied space (the
packing fraction) would be 0.524. A similar analysis (Ex. 3 and Ex. 4) of the
BCC and FCC Ilattices, results in packing fractions of 0.680 and 0.740,
respectively. These higher packing fractions are to be anticipated since, in
each case, the BCC and FCC structures represent an attempt to compensate for
the empty space of the SC lattice, which is seen in Fig. 1.8 to be concentrated
in the cube center and at the center of each face.

Coordination spheres

Yet another characteristic of lattice structure is its coordination properties. This
concerns the number of nearest (or next-nearest) neighboring lattice points and
their distance. Consider again the SC lattice in Fig. 1.8. For a given lattice
point, the shortest distance to another lattice site is the lattice spacing a. If we
search around any given lattice point at this distance we will encounter six
other lattice sites. Hence, the nearest neighbor coordination number for the SC
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Table 1.1 Properties of cubic lattices.

SC BCC FCC
Conventional cell volume a a a
Lattice points per cell 1 2 4
Primitive cell volume a a2 a4
Nearest neighbors 6 8 12
Nearest neighbor separation a V3a/2 a/\?2
Next-nearest neighbors 12 6 6
Next-nearest neighbor separation v/2a a a
Packing fraction /6 =0.524 \/31/8 = 0.680 +/2m/6 = 0.740
(@) (b)
| (<]
T
| (<]
er—i--e
I o
e — —— -

(a) The FC cubic structure of NaCl. Left-hand figure highlights the diatomic basis set consisting of
one (I anion (large solid circle) and one Na cation (large open circle in cube center). Right-hand
figure shows the result when this basis set is attached to the sites of a FC cubic lattice.

(b) The simple cubic structure of CsCl. Left-hand figure highlights the diatomic basis set
consisting of one Cl anion (large solid circle) and one Cs cation (large open circle in cube center).
Right-hand figure illustrates how the smaller size of the Cs cation is comfortably fitted to the
void space present in the SC center.

lattice is six. Likewise, the next largest distance to another lattice site is V2a
and we will find a next-nearest neighbor coordination number of 12.
A summary of the coordination properties and ideal packing fractions of cubic
lattices is provided in Table 1.1.

Rocksalt and diamond

Now let’s consider some common examples of cubic crystals found in nature
to see how their lattice structures arise. First we consider NaCl (rocksalt)
whose Na™ and C1~ atoms are arranged as shown in Fig. 1.10a. The structure
is built from a FCC space lattice containing a basis of two atoms:

Cl atom: ECI = 0d, + 0d, + 0d;

Na atomm: Ry, — -, + 2y + - (18)
a atom: Ry, = — — —ad3.
N 2al 2a2 2&3
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Because the FCC conventional cell contains four lattice points, we should find
four units of the chemical formula (NaCl) present in each cell. Let’s check.
Each one of eight corners provides one-eighth of a CI anion and each one of
six faces provides one-half of a Cl anion inside the cell, resulting in a total of
four Cl anions per cell. Likewise, there is one entire Na cation in the cell center
and each of 12 edges provide one-quarter of a Na cation, resulting in a total of
four Na cations per cell.

Compare this NaCl structure with that of a chemically equivalent salt, CsCl,
shown in Fig. 1.10b. Interestingly enough, the structure here is not built on the
FCC lattice, but on the SC lattice with a basis of two atoms:

Cl atom: ]_éc] = 0d; + 0d» + 0d;
Cs atom:ﬁcszlﬁl+lé'2+ld’3. (1-9)
2 2 2

Because the SC is a primitive cell, it should contain just one unit of the
chemical formula CsCl, and indeed it does. Why though does CsClI not assume
the FCC structure like NaCl? This difference stems from the differing sizes of
the ions and an inherent tendency for nature to favor efficient packing of space.
In NaCl, the Na™ and C1~ are nearly equal in diameter and, in this instance,
space is best filled by using the FCC structure. However, Cs"' is much smaller
in diameter and space is more efficiently occupied using the SC lattice. Thus
the crystalline structure realized in nature is a consequence of many factors
including the size of the particles, their bonding requirements, and a desire to
minimize empty space.

As another example, we consider the structure of diamond. Diamond is
composed entirely of C atoms that are bonded covalently. Because of the
discrete nature of the covalent bond, each C atom must form a single covalent
bond with four other C atoms in order to satisfy the requirement of a closed
electronic shell configuration. This bonding requirement promotes a tetragonal
aspect of the diamond structure, which can be seen in Fig. 1.11a. Here the
diamond structure is composed of an FCC lattice with a basis of two identical
carbon atoms located at

Crystal structure (FC cubic) of (a) diamond and (b) zincblende (ZnS).
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I_él = 0d; + 0d, + 0d;
B — 1, L 1, L 1, -
2—4 1 402 4 3
Zincblende (ZnS), shown in Fig. 1.11b, is identical in structure to that of

diamond, except that the basis contains two dissimilar atoms:

(1.10)

Rg = 0d) + 0@, + 0d3
IR PR (1.11)
an4a1 4a2 403

1.3.2 Hexagonal lattices

The primitive cell of the hexagonal space lattice, shown in Fig. 1.12a, looks
nothing at all like a hexagon. Instead it resembles a tall rectangular box that has
been squished from four 90° angles to a pair of 120° and 60° angles, respect-
ively. The hexagonal appearance only emerges when three or more of these
boxes are combined.

Hexagonal close packed (HCP)

By far the most prominent occurrence of hexagonal structure in nature appears
in the form of the hexagonal close packed (HCP) structure in which the

(a) (b) hexagonal close
packed (conventional)

hexagonal (primitive)

@ TP (a) primitive cell of the hexagonal lattice and (b) corresponding conventional cells for the

hexagonal close packed structure. The two conventional cells differ only in the location of the central
lattice site (B versus C). (c) Three conventional cells are combined to form a hexagonal base (A) with
two possibilities for the central layer (AB versus AC).
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Summary

layer A

The lattice sites of a conventional FC cubic lattice (left-hand figure) are shown to be equivalent
to the lattice sites of the hexagonal layering ABCABC . . ..

primitive cell contains a two particle basis. As shown in Fig. 1.12b, the second
particle is located on one side or the other of the squished box midway up. The
simplest way to view the HCP structure is to consider that it is constructed by
alternating layers of the 2D hexagonal lattice. When we combine three primi-
tive cells each with two basis particles, our bottom layer (layer A) appears as a
hexagonal net (see Fig. 12¢). The next layer (layer B) is formed by the second
particle of the basis and again forms another hexagonal net which is offset from
layer A such that the particles in layer B minimize waste space by fitting into
some of the shallows of layer A. If the second particle in the basis set happened
to be located on the other side of the primitive cell, an alternative layer
(layer C) could likewise be positioned atop layer A. In either case, the second
layer is then covered by another layer A, directly over the first layer, which
corresponds to the top of the three primitive cells.

Layering of the form ABABAB ... or ACACAC ... makes up the HCP
structure. But layering of the form ABCABC ... does not! As shown in
Fig. 1.13, this third layering pattern just reproduces the FCC structure. The
packing fractions of the HCP and FCC are identical and both correspond to the
best packing efficiency possible for an ordered arrangement of spheres.

Summary
|

o  The arrangement of atoms in any ideal crystal can be described by a
combination of a space lattice (defined by the set of translations,
T= hd, + ka, + ld3;) and a basis set (defined in reference to a lattice
site by R; = xd, + yidy + z;d3) affixed to each lattice site.

® A primitive cell contains only one lattice site and has the smallest
volume needed to fill space by the translations, 7. Conventional cells
contain more than one lattice site.
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Space lattices are categorized according to their special symmetry
properties into 14 distinct types known as Bravais lattices.

The ideal packing fraction is the ratio of cell space occupied by a
monatomic basis with atoms of maximal diameter to the volume of
the cell itself.

The coordination number refers to the number of neighboring lattice
sites located at a common distance from a central site.

Exercises

1.1

1.2.

1.3.

1.4.

L.5.

Show that the volume of the primitive cell of a BCC crystal lattice is
@’/2, where a is the lattice constant of the conventional cell.

Show that the volume of the primitive cell of a FCC crystal lattice is a*/4,
where a is the lattice constant of the conventional cell.

Show that the packing fraction of a BCC crystal lattice is

V31/8 = 0.680.
Show that the packing fraction of a FCC crystal lattice is
V21 /6 = 0.740.

The 2D crystal shown in Fig. 1.14 contains three atoms with a chemical
formula ABC,. Illustrated in the figure are several possible tiles.
(a) Identify which of the tiles are primitive cells. (b) Identify which of
the tiles are conventional cells. (c) Identify any tiles that are unable to
correctly fill the space. (d) For each primitive cell, provide expressions
for the appropriate basis vectors describing the basis set of atoms.

1 I
- - - - ---@® -- -

® B

O C

N
dp
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Suggested reading

1.6.

1.7.
1.8.

1.9.

Consider again the 2D crystal shown in Fig. 1.14. Describe all the basic
symmetry operations (translation, rotation and mirror only) satisfied by
this lattice.

For the HCP crystal structure, show that the ideal c/a ratio is 1.633.
Bromine has an orthorhombic lattice structure with |d,| = 4.65
A, |@| = 6.73A, |G| = 8.70A. (a) The atomic weight of bromine is
79.9 g/mol. If it has a density of 3.12 g/cc, how many bromine atoms
reside in a single unit cell? (b) Which type of orthorhombic lattice (i.e, BC,
FC, etc.) is suggested by your finding in part (a)? Explain. (c) If the atomic
radius of bromine is 1.51A, determine the packing fraction.

Shown in Fig. 1.15 is the unit cell of a monatomic crystal. (a) How would
you describe this particular crystal structure? (b) What is the maximum
packing fraction you should expect for this specific structure?

4 A

Suggested reading

There are many good introductory textbooks that develop crystal structure. These are
just a few favorites:

C. Kittel, Introduction to Solid State Physics, 8th Ed. (John Wiley and Sons, 2005).
J. S. Blakemore, Solid State Physics, 2nd Ed. (W. B. Saunders Co., Philadelphia, 1974).
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston,

New York, 1976).

M. A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-

Wesley, Reading, MA, 1975).



