
Crystal Structure 12
Having introduced a number of important ideas in one dimension, we
must now deal with the fact that our world is actually spatially three-
dimensional. While this adds a bit of complication, really the important
concepts are no harder in three dimensions than they were in one di-
mension. Some of the most important ideas we have already met in one
dimension, but we will reintroduce them more generally here.
There are two things that might be difficult here. First, we do need to

wrestle with a bit of geometry. Hopefully most will not find this too hard.
Secondly we will also need to establish a language in order to describe
structures in two and three dimensions intelligently. As such, much of
this chapter is just a list of definitions to be learned, but unfortunately
this is necessary in order to be able to continue further at this point.

12.1 Lattices and Unit Cells

Definition 12.1 A lattice1 is an infinite set of points defined by integer

1Warning: Some books (Ashcroft and
Mermin in particular) refer to this as a
Bravais lattice. This enables them to
use the term lattice to describe other
things that we would not call a lattice
(e.g., the honeycomb). However, the
definition we use here is more common
among crystallographers, and more cor-
rect mathematically as well.

sums of a set of linearly independent primitive lattice2 vectors.

2Very frequently “primitive lattice vec-
tors” are called “primitive basis vec-
tors” (not the same use of the word
“basis” as in Section 10.1) or “primi-
tive translation vectors”.
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[1, 2] = a1 + 2a2

Fig. 12.1 A lattice is defined as integer
sums of of primitive lattice vectors.

For example, in two dimensions, as shown in Fig. 12.1 the lattice
points are described as

R[n1 n2] = n1a1 + n2a2 n1, n2 ∈ Z (2d)

with a1 and a2 being the primitive lattice vectors and n1 and n2 being
integers. In three dimensions points of a lattice are analogously indexed
by three integers:

R[n1 n2 n3] = n1a1 + n2a2 + n3a3 n1, n2, n3 ∈ Z (3d).
(12.1)

Note that in one dimension this definition of a lattice fits with our pre-
vious description of a lattice as being the points R = na with n an
integer.
It is important to point out that in two and three dimensions, the

choice of primitive lattice vectors is not unique,3 as shown in Fig. 12.2.
(In one dimension, the single primitive lattice vector is unique up to the
sign, or direction, of a.) Fig. 12.2 The choice of primitive lat-

tice vectors for a lattice is not unique.
(Four possible sets of primitive lattice
vectors are shown, but there are an in-
finite number of possibilities!)

3Given a set of primitive lattice vectors ai a new set of primitive lattice vectors may
be constructed as bi =

�
j mijaj so long as mij is an invertible matrix with integer

entries and the inverse matrix [m−1]ij also has integer entries.
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It turns out that there are several definitions that are entirely equiv-
alent to the one we have just given:

Equivalent Definition 12.1.1 A lattice is an infinite set of vectors
where addition of any two vectors in the set gives a third vector in the
set.

It is easy to see that our first definition 12.1 implies the second one 12.1.1.
Here is a less crisply defined, but sometimes more useful definition.

Equivalent Definition 12.1.2 A lattice is a set of points where the
environment of any given point is equivalent to the environment of any
other given point.

Fig. 12.3 Any periodic structure can
be represented as a lattice of repeating
motifs.

P

R

Q

Fig. 12.4 The honeycomb is not a lat-
tice. Points P and R are inequivalent
(points P and Q are equivalent).

It turns out that any periodic structure can be expressed as a lattice of
repeating motifs. A cartoon of this statement is shown in Fig. 12.3. One
should be cautious however, that not all periodic arrangements of points
are lattices. The honeycomb4 shown in Fig. 12.4 is not a lattice. This

4One should be very careful not to
call the honeycomb a hexagonal lattice.
First of all, by our definition it is not
a lattice at all since all points do not
have the same environment. Secondly,
some people (perhaps confusingly) use
the term “hexagonal” to mean what
the rest of us call a triangular lattice:
a lattice of triangles where each point
has six nearest neighbor points (see
Fig. 12.6).

is obvious from the third definition 12.1.2: The environment of point
P and point R are actually different—point P has a neighbor directly
above it (the point R), whereas point R has no neighbor directly above.
In order to describe a honeycomb (or other more complicated arrange-

ments of points) we have the idea of a unit cell, which we have met before
in Section 10.1. Generally we have

Definition 12.2 A unit cell is a region of space such that when many
identical units are stacked together it tiles (completely fills) all of space
and reconstructs the full structure.

An equivalent (but less rigorous) definition is

Equivalent Definition 12.2.1 A unit cell is the repeated motif which
is the elementary building block of the periodic structure.

To be more specific we frequently want to work with the smallest possible
unit cell:

Definition 12.3 A primitive unit cell for a periodic crystal is a unit
cell containing exactly one lattice point.

As mentioned in Section 10.1 the definition of the unit cell is never
unique. This is shown, for example, in Fig. 12.5.
Sometimes it is useful to define a unit cell which is not primitive in

order to make it simpler to work with. This is known as a conventional
unit cell. Almost always these conventional unit cells are chosen so as
to have orthogonal axes.
Some examples of possible unit cells are shown for the triangular lat-

tice in Fig. 12.6. In this figure the conventional unit cell (upper left) is
chosen to have orthogonal axes—which is often easier to work with than
axes which are non-orthogonal.
A note about counting the number of lattice points in the unit cell. It

is frequently the case that we will work with unit cells where the lattice
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points live at the corners (or edges) of the cells. When a lattice point is
on the boundary of the unit cell, it should only be counted fractionally
depending on what fraction of the point is actually in the cell. So for
example in the conventional unit cell shown in Fig. 12.6, there are two
lattice points within this cell. There is one point in the center, then four
points at the corners—each of which is one quarter inside the cell, so we
obtain 2 = 1+4(14 ) points in the cell. (Since there are two lattice points
in this cell, it is by definition not primitive.) Similarly for the primitive
cell shown in Fig. 12.6 (upper right), the two lattice points at the far
left and the far right have a 60o degree slice (which is 1/6 of a circle)
inside the cell. The other two lattice points each have 1/3 of the lattice
point inside the unit cell. Thus this unit cell contains 2(13 ) + 2(16 ) = 1
point, and is thus primitive. Note however, that we can just imagine
shifting the unit cell a tiny amount in almost any direction such that a
single lattice point is completely inside the unit cell and the others are
completely outside the unit cell. This sometimes makes counting much
easier.

Fig. 12.5 The choice of a unit cell is
not unique. All of these unit cells can
be used as “tiles” to perfectly recon-
struct the full crystal.

A conventional

unit cell

A primitive

unit cell

Wigner–Seitz

unit cell

Fig. 12.6 Some unit cells for the trian-
gular lattice.

Also shown in Fig. 12.6 is a so-called Wigner–Seitz unit cell

Definition 12.4 Given a lattice point, the set of all points in space
which are closer to that given lattice point than to any other lattice point
constitute the Wigner–Seitz cell of the given lattice point.5

5A construction analogous to Wigner–
Seitz can be performed on an irregular
collection of points as well as on a peri-
odic lattice. For such an irregular set of
point the region closer to one particular
point than to any other of the points is
known as a Voronoi cell.

There is a rather simple scheme for constructing such a Wigner–Seitz
cell: choose a lattice point and draw lines to all of its possible near
neighbors (not just its nearest neighbors). Then draw perpendicular
bisectors of all of these lines. The perpendicular bisectors bound the
Wigner–Seitz cell. It is always true that the Wigner–Seitz construction
for a lattice gives a primitive unit cell. In Fig. 12.7 we show another
example of the Wigner–Seitz construction for a two-dimensional lattice.

Fig. 12.7 The Wigner–Seitz construction for a lattice in two dimensions. On the left
perpendicular bisectors are added between the darker point and each of its neighbors.
The area bounded defines the Wigner–Seitz cell. On the right it is shown that the
Wigner–Seitz cell is a primitive unit cell. (The cells on the right are exactly the same
shape as the bounded area on the left!)
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A similar construction can be performed in three dimensions in which
case one must construct perpendicular-bisecting planes to bound the
Wigner–Seitz cell.6 See for example, Figs. 12.13 and 12.16.

6Eugene Wigner was yet another Nobel
laureate who was one of the truly great
minds of the last century of physics.
Perhaps as important to physics was
the fact that his sister, Margit, mar-
ried Dirac. It was often said that Dirac
could be a physicist only because Mar-
git handled everything else. Fredrick
Seitz was far less famous, but gained
notoriety in his later years by being
a consultant for the tobacco industry,
a strong proponent of the Regan-era
Star Wars missile defense system, and
a prominent sceptic of global warming.
He passed away in 2007.

Definition 12.5 The description of objects in the unit cell with respect
to the reference lattice point in the unit cell is known as a basis.

This is the same definition of “basis” that we used in Section 10.1. In
other words, we think of reconstructing the entire crystal by associating
with each lattice point a basis of atoms.
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Fig. 12.8 Top: A periodic structure in
two dimensions. A unit cell is marked
with the dotted lines. Bottom: A
blow-up of the unit cell with the coor-
dinates of the objects in the unit cell
with respect to the reference point in
the lower left-hand corner. The basis is
the description of the atoms along with
these positions.

In Fig. 12.8 (top) we show a periodic structure in two dimension made
of two types of atoms. On the bottom we show a primitive unit cell
(expanded) with the position of the atoms given with respect to the
reference point of the unit cell which is taken to be the lower left-hand
corner. We can describe the basis of this crystal as follows:

Basis for crystal in Fig. 12.8 =

Large Light Gray Atom Position= [a/2, a/2]

Small Dark Gray Atoms Position= [a/4, a/4]
[a/4, 3a/4]
[3a/4, a/4]
[3a/4, 3a/4]

The reference points (the small black dots in the figure) forming the
square lattice have positions

R[n1 n2] = [a n1, a n2] = a n1x̂+ a n2ŷ (12.2)

with n1, n2 integers so that the large light gray atoms have positions

Rlight−gray
[n1 n2]

= [a n1, a n2] + [a/2, a/2]

whereas the small dark gray atoms have positions

Rdark−gray1
[n1 n2]

= [a n1, a n2] + [a/4, a/4]

Rdark−gray2
[n1 n2]

= [a n1, a n2] + [a/4, 3a/4]

Rdark−gray3
[n1 n2]

= [a n1, a n2] + [3a/4, a/4]

Rdark−gray4
[n1 n2]

= [a n1, a n2] + [3a/4, 3a/4].

In this way you can say that the positions of the atoms in the crystal
are “the lattice plus the basis”.
We can now return to the case of the honeycomb shown in Fig. 12.4.

The same honeycomb is shown in Fig. 12.9 with the lattice and the basis
explicitly shown. Here, the reference points (small black dots) form a
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(triangular) lattice, where we can write the primitive lattice vectors as

a1 = a x̂

a2 = (a/2) x̂+ (a
√
3/2) ŷ. (12.3)

In terms of the reference points of the lattice, the basis for the primitive
unit cell, i.e., the coordinates of the two larger circles with respect to
the reference point, are given by 1

3 (a1 + a2) and
2
3 (a1 + a2).

a2

a1

1
3 (a1 + a2)

2
3 (a1 + a2)

Fig. 12.9 Left: The honeycomb from
Fig. 12.4 is shown with the two inequiv-
alent points of the unit cell given dif-
ferent shades. The unit cell is out-
lined dotted and the corners of the
unit cell are marked with small black
dots (which form a triangular lattice).
Right: The unit cell is expanded and
coordinates are given with respect to
the reference point at the lower left cor-
ner.

12.2 Lattices in Three Dimensions

Fig. 12.10 A cubic lattice, otherwise
known as cubic “P” or cubic primitive.

The simplest lattice in three dimensions is the simple cubic lattice shown
in Fig. 12.10 (sometimes known as cubic “P” or cubic-primitive lattice).
The primitive unit cell in this case can most conveniently be taken to
be a single cube—which includes 1/8 of each of its eight corners (see
Fig. 12.11).

Fig. 12.11 Unit cells for cubic, tetrag-
onal, and orthorhombic lattices.

Only slightly more complicated than the simple cubic lattice are the
tetragonal and orthorhombic lattices where the axes remain perpendicu-
lar, but the primitive lattice vectors may be of different lengths (shown
in Fig. 12.11). The orthorhombic unit cell has three different lengths of
its perpendicular primitive lattice vectors, whereas the tetragonal unit
cell has two lengths the same and one different.
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Conventionally, to represent a given vector amongst the infinite num-
ber of possible lattice vectors in a lattice, one writes

[uvw] = ua1 + va2 + wa3 (12.4)

where u,v, and w are integers. For cases where the lattice vectors are
orthogonal, the basis vectors a1, a2, and a3 are assumed to be in the x̂,
ŷ, and ẑ directions. We have seen this notation before,7 for example, in7This notation is also sometimes

abused, as in Eq. 12.2 or Fig. 12.8,
where the brackets enclose not integers,
but distances. The notation can also
be abused to specify points which are
not members of the lattice, by choos-
ing, u, v, or w to be non-integers. We
will sometimes engage in such abuse.

the subscripts of the equations after definition 12.1.
Lattices in three dimensions also exist where axes are not orthogonal.

We will not cover all of these more complicated lattices in detail in
this book. (In Section 12.2.4 we will briefly look through these other
cases, but only at a very cursory level.) The principles we learn in the
more simple cases (with orthogonal axes) generalize fairly easily, and just
add further geometric and algebraic complexity without illuminating the
physics much further.
Two particular lattices (with orthogonal axes) which we will cover

in some detail are body-centered cubic (bcc) lattices and face-centered
cubic (fcc) lattices.

12.2.1 The Body-Centered Cubic (bcc) Lattice

Fig. 12.12 Conventional unit cell for
the body-centered cubic (I) lattice.
Left: 3D view. Right: A plan view
of the conventional unit cell. Unlabeled
points are both at heights 0 and a. a

a

a

Body-centered cubic

unit cell

a/2

a

Plan view

The body-centered cubic (bcc) lattice is a simple cubic lattice where
there is an additional lattice point in the very center of the cube (this
is sometimes known8 as cubic-I.) The unit cell is shown in the left of8Cubic-I comes from “Innenzentriert”

(inner-centered). This notation was in-
troduced by Bravais in his 1848 trea-
tise (Interestingly, Europe was burning
in 1848, but obviously that didn’t stop
science from progressing.)

Fig. 12.12. Another way to show this unit cell, which does not rely on
showing a three-dimensional picture, is to use a so-called plan view of the
unit cell, shown in the right of Fig. 12.12. A plan view (a term used in
engineering and architecture) is a two-dimensional projection from the
top of an object where heights are labeled to show the third dimension.
In the picture of the bcc unit cell, there are eight lattice points on the

corners of the cell (each of which is 1/8 inside of the conventional unit
cell) and one point in the center of the cell. Thus the conventional unit
cell contains exactly two (= 8× 1/8 + 1) lattice points.
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Packing together these unit cells to fill space, we see that the lattice
points of a full bcc lattice can be described as being points having co-
ordinates [x, y, z] where either all three coordinates are integers [uvw]
times the lattice constant a, or all three are half-odd-integers times the
lattice constant a.
It is often convenient to think of the bcc lattice as a simple cubic lattice

with a basis of two atoms per conventional cell. The simple cubic lattice
contains points [x, y, z] where all three coordinates are integers in units
of the lattice constant. Within the conventional simple-cubic unit cell
we put one point at position [0, 0, 0] and another point at the position
[ 12 ,

1
2 ,

1
2 ] in units of the lattice constant. Thus the points of the bcc

lattice are written in units of the lattice constant as

Rcorner = [n1, n2, n3]

Rcenter = [n1, n2, n3] + [ 12 ,
1
2 ,

1
2 ]

as if the two different types of points were two different types of atoms,
although all points in this lattice should be considered equivalent (they
only look inequivalent because we have chosen a conventional unit cell
with two lattice points in it). From this representation we see that we can
also think of the bcc lattice as being two interpenetrating simple cubic
lattices displaced from each other by [12 ,

1
2 ,

1
2 ]. (See also Fig. 12.14.)

We may ask why it is that this set of points forms a lattice. In terms of
our first definition of a lattice (definition 12.1) we can write the primitive
lattice vectors of the bcc lattice as

a1 = [1, 0, 0]

a2 = [0, 1, 0]

a3 = [ 12 ,
1
2 ,

1
2 ]

in units of the lattice constant. It is easy to check that any combination

R = n1a1 + n2a2 + n3a3 (12.5)

with n1, n2, and n3 integers gives a point within our definition of the bcc
lattice (that the three coordinates are either all integers or all half-odd
integers times the lattice constant). Further, one can check that any
point satisfying the conditions for the bcc lattice can be written in the
form of Eq. 12.5.

Fig. 12.13 The Wigner–Seitz cell of
the bcc lattice (this shape is a “trun-
cated octahedron”). The hexago-
nal face is the perpendicular bisecting
plane between the lattice point (shown
as a sphere) in the center and the lattice
point (also a sphere) on the corner. The
square face is the perpendicular bisect-
ing plane between the lattice point in
the center of the unit cell and a lattice
point in the center of the neighboring
unit cell.

Fig. 12.14 The Wigner–Seitz cells of
the bcc lattice pack together to tile all
of space. Note that the structure of the
bcc lattice is that of two interpenetrat-
ing simple cubic lattices.

We can also check that our description of a bcc lattice satisfies our
second description of a lattice (definition 12.1.1) that addition of any
two points of the lattice (given by Eq. 12.5) gives another point of the
lattice.
More qualitatively we can consider definition 12.1.2 of the lattice—

that the local environment of every point in the lattice should be the
same. Examining the point in the center of the unit cell, we see that
it has precisely eight nearest neighbors in each of the possible diagonal
directions. Similarly, any of the points in the corners of the unit cells will
have eight nearest neighbors corresponding to the points in the center
of the eight adjacent unit cells.
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The coordination number of a lattice (frequently called Z or z) is the
number of nearest neighbors any point of the lattice has. For the bcc
lattice the coordination number is Z = 8.
As in two dimensions, a Wigner–Seitz cell can be constructed around

each lattice point which encloses all points in space that are closer to that
lattice point than to any other point in the lattice. This Wigner–Seitz
unit cell for the bcc lattice is shown in Fig. 12.13. Note that this cell is
bounded by the perpendicular bisecting planes between lattice points.
These Wigner–Seitz cells, being primitive, can be stacked together to fill
all of space as shown in Fig. 12.14.

12.2.2 The Face-Centered Cubic (fcc) Lattice

Fig. 12.15 Conventional unit cell for
the face-centered cubic (F) lattice.
Left: 3D view. Right: A plan view
of the conventional unit cell. Unlabeled
points are both at heights 0 and a. a

a

a

Face-centered cubic

unit cell

a/2a/2

a/2

a/2

a

Plan view

The face-centered (fcc) lattice is a simple cubic lattice where there
is an additional lattice point in the center of every face of every cube
(this is sometimes known as cubic-F, for “face-centered”). The unit
cell is shown in the left of Fig. 12.15. A plan view of the unit cell is
shown on the right of Fig. 12.15 with heights labeled to indicate the
third dimension.

Fig. 12.16 The Wigner–Seitz cell of
the fcc lattice (this shape is a “rhombic
dodecahedron”). Each face is the per-
pendicular bisector between the central
point and one of its 12 nearest neigh-
bors.

In the picture of the fcc unit cell, there are eight lattice points on the
corners of the cell (each of which is 1/8 inside of the conventional unit
cell) and one point in the center of each of the six faces (each of which
is 1/2 inside the cell). Thus the conventional unit cell contains exactly
four (= 8 × 1/8 + 6 × 1/2) lattice points. Packing together these unit
cells to fill space, we see that the lattice points of a full fcc lattice can
be described as being points having coordinates (x, y, z) where either all
three coordinates are integers times the lattice constant a, or two of the
three coordinates are half-odd integers times the lattice constant a and
the remaining one coordinate is an integer times the lattice constant
a. Analogous to the bcc case, it is sometimes convenient to think of
the fcc lattice as a simple cubic lattice with a basis of four atoms per
conventional unit cell. The simple cubic lattice contains points [x, y, z]
where all three coordinates are integers in units of the lattice constant
a. Within the conventional simple-cubic unit cell we put one point at
position [0, 0, 0] and another point at the position [ 12 ,

1
2 , 0] another point
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at [ 12 , 0,
1
2 ] and another point at [0, 1

2 ,
1
2 ]. Thus the lattice points of the

fcc lattice are written in units of the lattice constant as

Rcorner = [n1, n2, n3] (12.6)

Rface−xy = [n1, n2, n3] + [ 12 ,
1
2 , 0]

Rface−xz = [n1, n2, n3] + [ 12 , 0,
1
2 ]

Rface−yz = [n1, n2, n3] + [0, 1
2 ,

1
2 ].

Again, this expresses the points of the lattice as if they were four dif-
ferent types of points but they only look inequivalent because we have
chosen a conventional unit cell with four lattice points in it. Since the
conventional unit cell has four lattice points in it, we can think of the
fcc lattice as being four interpenetrating simple cubic lattices.
Again we can check that this set of points forms a lattice. In terms

of our first definition of a lattice (definition 12.1) we write the primitive
lattice vectors of the fcc lattice as

a1 = [ 12 ,
1
2 , 0]

a2 = [ 12 , 0,
1
2 ]

a3 = [0, 1
2 ,

1
2 ]

in units of the lattice constant. Again it is easy to check that any
combination

R = n1a1 + n2a2 + n3a3

with n1, n2, and n3 integers gives a point within our definition of the
fcc lattice (that the three coordinates are either all integers, or two of
three are half-odd integers and the remaining is an integer in units of
the lattice constant a).

Fig. 12.17 The Wigner–Seitz cells of
the fcc lattice pack together to tile all
of space. Also shown in the picture are
two conventional (cubic) unit cells.

We can also similarly check that our description of a fcc lattice satisfies
our other two definitions of (definition 12.1.1 and 12.1.2) of a lattice.
The Wigner–Seitz unit cell for the fcc lattice is shown in Fig. 12.16. In
Fig. 12.17 it is shown how these Wigner–Seitz cells pack together to fill
all of space.

12.2.3 Sphere Packing
Fig. 12.18 Top: Simple cubic, Mid-
dle: bcc, Bottom: fcc. The left shows
packing of spheres into these lattices.
The right shows a cutaway of the con-
ventional unit cell exposing how the fcc
and bcc lattices leave much less empty
space than the simple cubic.

Although the simple cubic lattice (see Fig. 12.10) is conceptually the
simplest of all lattices, in fact, real crystals of atoms are rarely simple
cubic.9 To understand why this is so, think of atoms as small spheres

9Of all of the chemical elements, polo-
nium is the only one which can form a
simple cubic lattice with a single atom
basis. (It can also form another crystal
structure depending on how it is pre-
pared.)

that weakly attract each other and therefore try to pack close together.
When you assemble spheres into a simple cubic lattice you find that it
is a very inefficient way to pack the spheres together—you are left with
a lot of empty space in the center of the unit cells, and this turns out
to be energetically unfavorable in most cases. Packings of spheres into
simple cubic, bcc, and fcc lattices are shown in Fig. 12.18. It is easy
to see that the bcc and fcc lattices leave much less open space between
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the spheres than packing the spheres in a simple cubic lattice10 (see also
Exercise 12.4). Correspondingly, bcc and fcc lattices are realized much
more frequently in nature than simple cubic (at least in the case of a
single atom basis). For example, the elements Al, Ca, Au, Pb, Ni, Cu,
Ag (and many others) are fcc whereas the elements Li, Na, K, Fe, Mo,
Cs (and many others) are bcc.

10In fact it is impossible to pack spheres
more densely than you would get by
placing the spheres at the vertices of
an fcc lattice. This result (known em-
pirically to people who have tried to
pack oranges in a crate) was first offi-
cially conjectured by Johannes Kepler
in 1611, but was not mathematically
proven until 1998! Note however that
there is another lattice, the hexago-

nal close packed lattice which achieves
precisely the same packing density for
spheres as the fcc lattice.

12.2.4 Other Lattices in Three Dimensions

Fig. 12.19 Conventional unit cells for
the fourteen Bravais lattice types. Note
that if you tried to construct a “face-
centered tetragonal” lattice, you would
find that by turning the axes at 45 de-
grees it would actually be equivalent
to a body-centered tetragonal lattice.
Hence face-centered tetragonal is not
listed as a Bravais lattice type (nor is
base-centered tetragonal for a similar
reason, etc.).

In addition to the simple cubic, orthorhombic, tetragonal, fcc, and
bcc lattices, there are nine other types of lattices in three dimensions.
These are known as the fourteen Bravais lattice types.11 Although the

11Named after Auguste Bravais who
classified all the three-dimensional lat-
tices in 1848. Actually they should be
named after Moritz Frankenheim who
studied the same thing over ten years
earlier—although he made a minor er-
ror in his studies, and therefore missed
getting his name associated with them.

study of all of these lattice types is beyond the scope of this book, it is
probably a good idea to know that they exist.
Figure 12.19 shows the full variety of Bravais lattice types in three di-
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mensions. While it is an extremely deep fact that there are only fourteen
lattice types in three dimensions, the precise statement of this theorem,
as well of the proof of it, are beyond the scope of this book. The key re-
sult is that any crystal, no matter how complicated, has a lattice which
is one of these fourteen types.12

12There is a real subtlety here in clas-
sifying a crystal as having a particu-
lar lattice type. There are only these
fourteen lattice types, but in principle a
crystal could have one lattice, but have
the symmetry of another lattice. An ex-
ample of this would be if the a lattice
were cubic, but the unit cell did not
look the same from all six sides. Crys-
tallographers would not classify this as
being a cubic material even if the lat-
tice happened to be cubic. The reason
for this is that if the unit cell did not
look the same from all six sides, there
would be no particular reason that the
three primitive lattice vectors should
have the same length—it would be an
insane coincidence were this to happen,
and almost certainly in any real mate-
rial the primitive lattice vector lengths
would actually have slightly different
values if measured more closely.

12.2.5 Some Real Crystals

Once we have discussed lattices we can combine a lattice with a basis to
describe any periodic structure—and in particular, we can describe any
crystalline structure. Several examples of real (and reasonably simple)
crystal structures are shown in Figs. 12.20 and 12.21.

Fig. 12.20 Top: Sodium forms a bcc
lattice. Bottom: Caesium chloride
forms a cubic lattice with a two atom
basis. Note carefully: CsCl is not bcc!
In a bcc lattice all of the points (includ-
ing the body center) must be identical.
For CsCl, the point in the center is Cl
whereas the points in the corner are Cs.

Sodium (Na)
Lattice = Cubic-I (bcc)

Basis = Na at [000] Plan view
unlabeled points at z = 0, 1

1/2

Caesium chloride (CsCl)
Lattice = Cubic-P

Basis = Cs at [000]

and Cl at [ 12
1
2
1
2 ] Plan view

unlabeled points at z = 0, 1

1/2
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Fig. 12.21 Some crystals based on the
fcc lattice. Top: Copper forms an fcc
lattice. Middle: Diamond (carbon) is
an fcc lattice with a two-atom basis.
Bottom: NaCl (salt) is also an fcc lat-
tice with a two atom basis. Note that
in every case, a conventional unit cell
is shown but the basis is given for the
primitive unit cell.

Copper(Cu)
Lattice = Cubic-F (fcc)

Basis = Cu at [000] Plan view
unlabeled points at z = 0, 1

1
2

1
2

1
2

1
2

Diamond (C); also Si and Ge
Lattice = Cubic-F (fcc)

Basis = C at [000]

and C at [ 14
1
4
1
4 ] Plan view

unlabeled points at z = 0, 1
1
2

1
2

1
2

1
2

3
4

1
4

3
4

1
4

Sodium Chloride (NaCl)
Lattice = Cubic-F (fcc)

Basis = Na at [000]

and Cl at [ 12
1
2
1
2 ] Plan view

z = 0, 1 layer z = 1
2 layer
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Chapter summary

This chapter introduced a plethora of new definitions, aimed at describ-
ing crystal structure in three dimensions. Here is a list of some of the
concepts that one should know:

• Definition of a lattice in three different ways. See definitions 12.1,
12.1.1, 12.1.2.

• Definition of a unit cell for a periodic structure, and definition of
a primitive unit cell and a conventional unit cell.

• Definition and construction of the Wigner–Seitz (primitive) unit
cell.

• One can write any periodic structure in terms of a lattice and a
basis (see examples in Fig. 12.20 and 12.21).

• In 3d, know the simple cubic lattice, the fcc lattice and the bcc
lattices in particular. Orthorhombic and tetragonal lattices are
also very useful to know.

• The fcc and bcc lattices can be thought of as simple cubic lattices
with a basis.

• Know how to read a plan view of a structure.

References

All solid state books cover crystal. Some books give way too much detail.
I recommend the following as giving not too much and not too little:

• Kittel, chapter 1
• Ashcroft and Mermin, chapter 4 (Caution of the nomenclature issue,

see margin note 1 of this chapter.)
• Hook and Hall, sections 1.1–1.3 (probably not enough detail here!)

For greater detail about crystal structure see the following:

• Glazer, chapters 1–3
• Dove, sections 3.1–3.2 (brief but good)

Exercises

(12.1) Crystal Structure of NaCl

Consider the NaCl crystal structure shown in
Fig. 12.21. If the lattice constant is a = 0.563
nm, what is the distance from a sodium atom to
the nearest chlorine? What is the distance from a
sodium atom to the nearest other sodium atom?

(12.2) Neighbors in the Face-Centered Lattice.

(a) Show that each lattice point in an fcc lattice
has twelve nearest neighbors, each the same dis-
tance from the initial point. What is this distance
if the conventional unit cell has lattice constant a?

(b)∗ Now stretch the side lengths of the fcc lattice
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such that you obtain a face-centered orthorhombic
lattice where the conventional unit cell has sides
of length a, b, and c which are all different. What
are the distances to these twelve neighboring points
now? How many nearest neighbors are there?

(12.3) Crystal Structure

The diagram of Fig. 12.22 shows a plan view of a
structure of cubic ZnS (zincblende) looking down
the z axis. The numbers attached to some atoms
represent the heights of the atoms above the z = 0
plane expressed as a fraction of the cube edge a.
Unlabeled atoms are at z = 0 and z = a.

(a) What is the Bravais lattice type?

(b) Describe the basis.

(c) Given that a = 0.541 nm, calculate the nearest-
neighbor Zn–Zn, Zn–S, and S–S distances.

1
4

3
4

3
4

1
4

1
2

1
2

1
2

1
2

a

a

Zn= S =

Fig. 12.22 Plan view of conventional unit cell of
zincblende.

(12.4) Packing Fractions

Consider a lattice with a sphere at each lattice
point. Choose the radius of the spheres to be such
that neighboring spheres just touch (see for exam-
ple, Fig. 12.18). The packing fraction is the fraction
of the volume of all of space which is enclosed by
the union of all the spheres (i.e., the ratio of the
volume of the spheres to the total volume).

(a) Calculate the packing fraction for a simple cubic
lattice.

(b) Calculate the packing fraction for a bcc lattice.

(c) Calculate the packing fraction for an fcc lattice.

(12.5) Fluorine Beta Phase

Fluorine can crystalize into a so-called beta-
phase at temperatures between 45 and 55 Kelvin.
Fig. 12.23 shows the cubic conventional unit cell
for beta phase fluorine in three-dimensional form
along with a plan view.

1
2

1
2

1
2

1
2

1
2

1
4
and 3

4
1
4
and 3

4

Fig. 12.23. A conventional unit cell for fluorine
beta phase. All atoms in the picture are fluo-
rine. Lines are drawn for clarity Top: Three-
dimensional view. Bottom: Plan view. Unlabeled
atoms are at height 0 and 1 in units of the lattice
constant.

� How many atoms are in this conventional unit
cell?

� What is the lattice and the basis for this crys-
tal?



Reciprocal Lattice,
Brillouin Zone, Waves in
Crystals 13
In the last chapter we explored lattices and crystal structure. However,
as we saw in Chapters 9–11, the important physics of waves in solids
(whether they are vibrational waves, or electron waves) is best described
in reciprocal space. This chapter thus introduces reciprocal space in
three dimensions. As with the previous chapter, there is some tricky
geometry in this chapter, and a few definitions to learn as well. As
a result this material is a bit tough to slog through, but stick with it
because soon we will make substantial use of what we learn here. At the
end of this chapter we will finally have enough definitions to describe
the dispersions of phonons and electrons in three-dimensional systems.

13.1 The Reciprocal Lattice in Three

Dimensions

13.1.1 Review of One Dimension

Let us first recall some results from our study of one dimension. We
consider a simple lattice in one dimension Rn = na with n an integer.
Recall that two points in k-space (reciprocal space) were defined to be
equivalent to each other if k1 = k2 + Gm where Gm = 2πm/a with m
an integer. The points Gm form the reciprocal lattice.
Recall that the reason that we identified different k values with each

other was because we were considering waves of the form

eikxn = eikna

with n an integer. Because of this form of the wave, we find that shifting
k → k +Gm leaves this functional form unchanged since

ei(k+Gm)xn = ei(k+Gm)na = eiknaei(2πm/a)na = eikxn

where we have used
ei2πmn = 1

in the last step. Thus, so far as the wave is concerned, k is the same as
k +Gm.
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13.1.2 Reciprocal Lattice Definition

Generalizing this one-dimensional result, we define

Definition 13.1 Given a (direct) lattice of points R, a point G is a
point in the reciprocal lattice if and only if

eiG·R = 1 (13.1)

for all points R of the direct lattice.

To construct the reciprocal lattice, let us first write the points of the
direct lattice in the form1 (here we specialize to the three-dimensional1There are certainly other ways to

specify the points of a direct lattice.
For example, it is sometimes convenient
to choose ai’s to describe the edges vec-
tors of a conventional unit cell, but then
the ni’s are not simply described as all
integers. This is done in section 13.1.5,
and is relevant for the Important Com-
ment there.

case)

R = n1a1 + n2a2 + n3a3 (13.2)

with n1, n2, and n3 integers, and with a1, a2, and a3 being primitive
lattice vectors of the direct lattice.
We now make two key claims:

(1) We claim that the reciprocal lattice (defined by Eq. 13.1) is a
lattice in reciprocal space (thus explaining its name).

(2) We claim that the primitive lattice vectors of the reciprocal lattice
(which we will call b1, b2, and b3) are defined to have the following
property:

ai · bj = 2πδij (13.3)

where δij is the Kronecker delta.22Leopold Kronecker was a mathemati-
cian who is famous (among other
things) for the sentence “God made the
integers, everything else is the work of
man”. In case you don’t already know
this, the Kronecker delta is defined as
δij = 1 for i = j and is zero otherwise.
(Kronecker did a lot of other interesting
things as well.)

We can certainly construct vectors bi to have the desired property of
Eq. 13.3, as follows:

b1 =
2π a2 × a3

a1 · (a2 × a3)

b2 =
2π a3 × a1

a1 · (a2 × a3)

b3 =
2π a1 × a2

a1 · (a2 × a3) .

It is easy to check that Eq. 13.3 is satisfied. For example,

a1 · b1 =
2π a1 · (a2 × a3)

a1 · (a2 × a3)
= 2π

a2 · b1 =
2π a2 · (a2 × a3)

a1 · (a2 × a3)
= 0.

Now, given vectors b1, b2, and b3 satisfying Eq. 13.3 we have claimed
that these are in fact primitive lattice vectors for the reciprocal lattice.
To prove this, let us write an arbitrary point in reciprocal space as

G = m1b1 +m2b2 +m3b3 (13.4)
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and for the moment, let us not require m1,m2, and m3 to be integers.
(We are about to discover that for G to be a point of the reciprocal
lattice, they must be integers, but this is what we want to prove!)
To find points of the reciprocal lattice we must show that Eq. 13.1 is

satisfied for all points R = n1a1+n2a2+n3a3 of the direct lattice with
n1, n2, and n3 integers. We thus write

eiG·R = ei(m1b1+m2b2+m3b3)·(n1a1+n2a2+n3a3) = e2πi(n1m1+n2m2+n3m3)
.

In order for G to be a point of the reciprocal lattice, this must equal
unity for all points R of the direct lattice, i.e., for all integer values
of n1, n2 and n3. Clearly this can only be true if m1,m2 and m3 are
also integers. Thus, we find that the points of the reciprocal lattice are
precisely those of the form of Eq. 13.4 withm1,m2 andm3 integers. This
further proves our claim that the reciprocal lattice is in fact a lattice!

13.1.3 The Reciprocal Lattice as a Fourier
Transform

Quite generally one can think of the reciprocal lattice as being a Fourier
transform of the direct lattice. It is easiest to start by thinking in one
dimension. Here the direct lattice is given again by Rn = an. If we want
to describe a “density” of lattice points in one dimension, we might put
a delta function at each lattice points and write the density as3

3Since the sums are over all lattice
points they should go from −∞ to +∞.
Alternatively, one uses periodic bound-
ary conditions and sums over all points.

ρ(r) =
�

n

δ(r − an).

Fourier transforming this function gives4 4With Fourier transforms there are sev-
eral different conventions about where
one puts the factors of 2π. Possibly in
your mathematics class you learned to
put 1/

√
2π with each integral. How-

ever, in solid state physics, convention-
ally 1/(2π) comes with each k integral,
and no factor of 2π comes with each r
integral. See Section 2.2.1 to see why
this is used.

F [ρ(r)] =

�
dreikrρ(r) =

�

n

�
dreikrδ(r − an) =

�

n

eikan

=
2π

|a|
�

m

δ(k − 2πm/a).

The last step here is a bit non-trivial.5 Here eikan is clearly unity if
5This is sometimes known as the Pois-
son resummation formula, after Siméon
Denis Poisson, the same guy after
whom Poisson’s equation ∇2φ = −ρ/�0
is named, as well as other mathematical
things such as the Poisson random dis-
tribution. His last name means “fish”
in French.

k = 2πm/a, i.e., if k is a point on the reciprocal lattice. In this case,
each term of the sum contributes unity to the sum and one obtains an
infinite result.6 If k is not such a reciprocal lattice point, then the terms

6Getting the prefactor right is a bit
harder. But actually, the prefactor isn’t
going to be too important for us.

of the sum oscillate and the sum comes out to be zero.
This principle generalizes to the higher (two- and three-)dimensional

cases. Generally

F [ρ(r)] =
�

R

eik·R =
(2π)D

v

�

G

δD(k−G) (13.5)

where in the middle term, the sum is over lattice points R of the direct
lattice, and in the last term it is a sum over points G of the reciprocal
lattice and v is the volume of the unit cell. Here D is the number of
dimensions (1, 2 or 3) and the δD is a D-dimensional delta function.7

7For example, in two dimensions

δ2(r− r0) = δ(x − x0)δ(y − y0) where
r = (x, y)
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The equality in Eq. 13.5 is similar to the one-dimensional case. If k
is a point of the reciprocal lattice, then eik·R is always unity and the
sum is infinite. However, if k is not a point on the reciprocal lattice
then the summands oscillate, and the sum comes out to be zero. Thus
one obtains delta-function peaks precisely at the positions of reciprocal
lattice vectors.

Aside: It is an easy exercise to show8 that the reciprocal lattice of an fcc8See Exercise 13.1.

direct lattice is a bcc lattice in reciprocal space. Conversely, the reciprocal lattice

of a bcc direct lattice is an fcc lattice in reciprocal space.

Fourier Transform of Any Periodic Function

In the prior section we considered the Fourier transform of a function
ρ(r) which is just a set of delta functions at lattice points. However,
it is not too different to consider the Fourier transform of any function
with the periodicity of the lattice (and this will be quite important in
Chapter 14). We say a function ρ(r) has the periodicity of a lattice if
ρ(r) = ρ(r+R) for any lattice vector R. We then want to calculate

F [ρ(r)] =

�
dr eik·rρ(r).

The integral over all of space can be broken up into a sum of integrals
over each unit cell. Here we write any point in space r as the sum of a
lattice point R and a vector x within the unit cell

F [ρ(r)] =
�

R

�

unit−cell

dx eik·(x+R)ρ(x+R) =
�

R

eik·R
�

unit−cell

dx eik·xρ(x).

where here we have used the invariance of ρ under lattice translations
x → x +R. The sum of exponentials, as in Eq. 13.5, just gives a sum
of delta functions yielding

F [ρ(r)] = (2π)D
�

G

δD(k−G)S(k)

where

S(k) =

�

unit−cell

dx eik·xρ(x) (13.6)

is known as the structure factor and will become very important in the
next chapter.

13.1.4 Reciprocal Lattice Points as Families of
Lattice Planes

Another way to understand the reciprocal lattice is via families of lattice
planes of the direct lattice.

Definition 13.2 A lattice plane (or crystal plane) is a plane con-
taining at least three non-collinear (and therefore an infinite number of)
points of a lattice.
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Definition 13.3 A family of lattice planes is an infinite set of equally
separated parallel lattice planes which taken together contain all points
of the lattice.

In Fig. 13.1, several examples of families of lattice planes are shown.
Note that the planes are parallel and equally spaced, and every point of
the lattice is included in exactly one lattice plane.

(010) family of lattice planes

(110) family of lattice planes

(111) family of lattice planes

Fig. 13.1 Examples of families of lat-
tice planes on the cubic lattice. Each of
these planes is a lattice plane because
it intersects at least three non-collinear
lattice points. Each picture is a fam-
ily of lattice planes since every lattice
point is included in one of the parallel
lattice planes. The families are labeled
in Miller index notation. Top (010);
Middle (110); Bottom (111). In the
top and middle the x-axis points to the
right and the y-axis points up. In the
bottom figure the axes are rotated for
clarity.

I now make the following claim:

Claim 13.1 The families of lattice planes are in one-to-one correspon-
dence9 with the possible directions of reciprocal lattice vectors, to which
they are normal. Further, the spacing between these lattice planes is
d = 2π/|Gmin| where Gmin is the minimum length reciprocal lattice
vector in this normal direction.

This correspondence is made as follows. First we consider the set of
planes defined by points r such that for some integer m,

G · r = 2πm. (13.7)

This defines an infinite set of parallel planes normal to G. Since eiG·r =
1 we know that every lattice point is a member of one of these planes
(since this is the definition of G in Eq. 13.1). However, for the planes
defined by Eq. 13.7, not every plane needs to contain a lattice point (so
generically this is a family of parallel equally spaced planes, but not a
family of lattice planes). For this larger family of planes, the spacing
between planes is given by

d =
2π

|G| .
(13.8)

To prove this we simply note (from Eq. 13.7) that two adjacent planes
must have

G · (r1 − r2) = 2π.

Thus in the direction parallel to G, the spacing between planes is 2π/|G|
as claimed.
Clearly different values of G that happen to point in the same direc-

tion, but have different magnitudes, will define parallel sets of planes.
As we increase the magnitude of G, we add more and more planes. For
example, examining Eq. 13.7 we see that when we double the magnitude
of G we correspondingly double the density of planes, which we can see
from the spacing formula Eq. 13.8. However, whichever G we choose, all
of the lattice points will be included in one of the defined planes. If we
choose the maximally possible spaced planes, hence the smallest possi-
ble value of G allowed in any given direction which we call Gmin, then
in fact every defined plane will include lattice points and therefore be

9For this one-to-one correspondence to be precisely true we must define G and −G to
be the same direction. If this sounds like a cheap excuse, we can say that “oriented”
families of lattice planes are in one-to-one correspondence with the directions of
reciprocal lattice vectors, thus keeping track of the two possible normals of the family
of lattice planes.
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lattice planes, and the spacing between these planes is correspondingly
2π/|Gmin|. This proves10 Claim 13.1.

13.1.5 Lattice Planes and Miller Indices

There is a useful notation for describing lattice planes (or reciprocal lat-
tice vectors) known as Miller indices.11 One first chooses edge vectors ai

11These are named after the nineteenth
century mineralogist William Hallowes
Miller.

for a unit cell in direct space (which may be primitive or non-primitive).
One then constructs reciprocal space vectors bi to satisfy ai ·bj = 2πδij
(see Eq. 13.3). In terms of these vectors bi, one writes (h, k, l) or (hkl)
with integers h, k and l, to mean the reciprocal space vector1212We have already used the corre-

sponding notation [uvw] to represent
lattice points of the direct lattice. See
for example, Eq. 12.1 and Eq. 12.4.

G(h,k,l) = hb1 + kb2 + lb3. (13.9)

Note that Miller indices can be negative, such as (1,−1, 1). Conven-
tionally, the minus sign is denoted with an over-bar rather than a minus
sign, so we write (11̄1) instead.1313How (11̄1) is pronounced is a bit ran-

dom. Some people say “one-(bar-one)-
one” and others say “one-(one-bar)-
one”. I have no idea how the commu-
nity got so confused as to have these
two different conventions. I think in
Europe the former is more prevalent
whereas in America the latter is more
prevalent. At any rate, it is always clear
when it is written.

Note that if one chooses ai to be the real (direct) space primitive lattice
vectors, then bi will be the primitive lattice vectors for the reciprocal
lattice. In this case, any set of integer Miller indices (hkl) represents
a reciprocal lattice vector. To represent a family of lattice plane, one
should take the shortest reciprocal lattice vector in the given direction
(see Claim 13.1), meaning h, k, and l should have no common divisors. If
(hkl) are not the shortest reciprocal lattice vector in a given direction,
then they represent a family of planes that is not a family of lattice
planes (i.e., there are some planes that do not intersect lattice points).
On the other hand, if one chooses ai to describe the edges of some

non-primitive (conventional) unit cell, the corresponding bi will not be
primitive reciprocal lattice vectors. As a result not all integer sets of
Miller indices will be reciprocal lattice vectors.

Important Comment: For any cubic lattice (simple cubic, fcc, or bcc) it

is conventional to choose ai to be ax̂, aŷ, and aẑ with a the cube edge length.

I.e., one chooses the orthogonal edge vectors of the conventional (cube) unit cell.

Correspondingly, bi are the vectors 2πx̂/a, 2πŷ/a, and 2πẑ/a. For the primitive

(simple) cubic case these are primitive reciprocal lattice vectors, but for the fcc

and bcc case, they are not.14 So in the fcc and bcc cases not all integer sets of

14Although this convention of work-
ing with non-primitive vectors bi makes
some things very complicated our only
other option would be to work with the
non-orthogonal coordinate axes of the
primitive lattice vectors—which would
complicate life even more!

Miller indices (hkl) are reciprocal lattice vectors.

To illustrate this point, consider the (010) family of planes for the cu-
bic lattice, shown in the top of Fig. 13.1. This family of planes intersects
every corner of the cubic unit cell. However, if we were discussing a bcc
lattice, there would also be another lattice point in the center of every
conventional unit cell which the (010) lattice planes would not intersect
(see top of Fig. 13.2). However, the (020) planes would intersect these

10More rigorously, if there is a family of lattice planes in direction �G with spacing between planes d, then G = 2π �G/d is
necessarily a reciprocal lattice vector. To see this note that eiG·R = 1 will be unity for all lattice points. Further, in a family
of lattice planes, all lattice points are included within the planes, so eiG·R = 1 for all R a lattice point, which implies G is a
reciprocal lattice vector. Furthermore, G is the shortest reciprocal lattice vector in the direction of �G since increasing G will
result in a smaller spacing of lattice planes and some planes will not intersect lattice points R.
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central points as well, so in this case (020) represents a true family of
lattice planes (and hence a reciprocal lattice vector) for the bcc lattice
whereas (010) does not! (See Fig. 13.2.) In Section 14.2 we will discuss
the “selection rules” for knowing when a set of Miller indices represents
a true family of lattice planes in the fcc and bcc cases.
From Eq. 13.8 one can write the spacing between adjacent planes of

a family of planes specified by Miller indices (h, k, l)

d(hkl) =
2π

|G| =
2π�

h2|b1|2 + k2|b2|2 + l2|b3|2
(13.10)

where we have assumed that the coordinate axes of the lattice vectors bi

are orthogonal. Recall that in the case of orthogonal axes |bi| = 2π/|ai|
where ai are the lattice constants in the three orthogonal directions.
Thus we can equivalently write

1

|d(hkl)|2
=

h2

a21
+

k2

a22
+

l2

a23 .

(13.11)

Note that for a cubic lattice this simplifies to

dcubic(hkl) =
a√

h2 + k2 + l2 .

(13.12)

(010) family of planes

(not all lattice points included)

(020) family of lattice planes

(110) family of lattice planes

Fig. 13.2 Top: For the bcc lattice, the
(010) planes are not a true family of lat-
tice planes since the (010) planes do not
intersect the lattice points in the mid-
dle of the cubes. Middle: The (020)
planes are a family of lattice planes
since they intersect all of the lattice
points. Bottom The (110) planes are
also a family of lattice planes.

A useful shortcut for figuring out the geometry of lattice planes is to
look at the intersection of a plane with the three coordinate axes. The
intersections x1, x2, x3 with the three coordinate axes (in units of the
three lattice constants) are related to the Miller indices via

1

x1
:
1

x2
:
1

x3
= h : k : l.

This construction is illustrated in Fig. 13.3.

x

y

z

a1
a2

a3

1

2

3

1 2

1

2

3

Fig. 13.3 Determining Miller indices from the intersection of a plane with the co-
ordinate axes. This plane intersects the coordinate axes at x = 2, y = 2 and z = 3
in units of the lattice constants. The reciprocals of these intercepts are 1

2
, 1
2
, 1
3
. The

smallest integers having these ratios are 3, 3, 2. Thus the Miller indices of this family
of lattice planes are (332). The spacing between lattice planes in this family would
be 1/|d(233) |2 = 32/a21 + 32/a22 + 22/a23 (assuming orthogonal axes).
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Finally, we note that different lattice planes may be the same under a
symmetry of the crystal. For example, in a cubic lattice, (111) looks the
same as (11̄1) after rotation (and possibly reflection) of the axes of the
crystal (but would never look like (122) under any rotation or reflection
since the spacing between planes is different!).15 If we want to describe

15It can sometimes be subtle to figure
out if a crystal looks the same from two
different directions: one needs to check
that the basis of the crystal looks the
same from the two directions! all lattice planes that are equivalent in this way, we write {111} instead.

It is interesting that lattice planes in crystals were well understood
long before people even knew for sure there was such a thing as atoms.
By studying how crystals cleave along certain planes, scientists like
Miller and Bravais could reconstruct a great deal about how these ma-
terials must be assembled.16

16There is a law known as “Bravais’
law”, which states that crystals cleave
most readily along faces having the
highest density of lattice points, or
equivalently the largest distance be-
tween lattice planes. To a large extent
this means that crystals cleave on lat-
tice planes with small Miller indices.

13.2 Brillouin Zones

The whole point of going into such gross detail about the structure of
reciprocal space is in order to describe waves in solids. In particular, it
will be important to understand the structure of the Brillouin zone.

 ω
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Fig. 13.4 Phonon spectrum of a di-
atomic chain in one dimension. Top:
Reduced zone scheme. Bottom: Ex-
tended zone scheme. (See Figs. 10.6
and 10.8.) We can display the dis-
persion in either form due to the fact
that wavevector is only defined modulo
2π/a, that is, it is periodic in the Bril-
louin zone.

13.2.1 Review of One-Dimensional Dispersions and
Brillouin Zones

As we learned in Chapters 9–11, the Brillouin zone is extremely impor-
tant in describing the excitation spectrum of waves in periodic media.
As a reminder, in Fig. 13.4 we show the excitation spectrum of vibra-
tions of a diatomic chain (Chapter 10) in both the reduced, and ex-
tended zone schemes. Since waves are physically equivalent under shifts
of the wavevector k by a reciprocal lattice vector 2π/a, we can always
express every excitation within the first Brillouin zone, as shown in the
reduced zone scheme (top of Fig. 13.4). In this example, since there
are two atoms per unit cell, there are precisely two excitation modes
per wavevector. On the other hand, we can always unfold the spectrum
and put the lowest (acoustic) excitation mode in the first Brillouin zone
and the higher-energy excitation mode (optical) in the second Brillouin
zone, as shown in the extended zone scheme (bottom of Fig. 13.4). Note
that there is a jump in the excitation spectrum at the Brillouin zone
boundary.

13.2.2 General Brillouin Zone Construction

Definition 13.4 A Brillouin zone is any primitive unit cell of the
reciprocal lattice.

Entirely equivalent to the one-dimensional situation, physical waves in
crystals are unchanged if their wavevector is shifted by a reciprocal lat-
tice vector k → k + G. Alternately, we realize that the physically rel-
evant quantity is the crystal momentum. Thus, the Brillouin zone has
been defined to include each physically different crystal momentum ex-
actly once (each k point within the Brillouin zone is physically different,
and all physically different points occur once within the zone).
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While the most general definition of Brillouin zone allows us to choose
any shape primitive unit cell for the reciprocal lattice, there are some
definitions of unit cells which are more convenient than others.
We define the first Brillouin zone in reciprocal space quite analogously

to the construction of the Wigner–Seitz cell for the direct lattice.

Definition 13.5 Start with the reciprocal lattice point G = 0. All k
points which are closer to 0 than to any other reciprocal lattice point
define the first Brillouin zone. Similarly all k points where the point
0 is the second closest reciprocal lattice point to that point constitute the
second Brillouin zone, and so forth. Zone boundaries are defined in
terms of this definition of Brillouin zones.

As with the Wigner–Seitz cell, there is a simple algorithm to construct
the Brillouin zones. Draw the perpendicular bisector between the point
0 and each of the reciprocal lattice vectors. These bisectors form the
Brillouin zone boundaries. Any point that you can get to from 0 without
crossing a perpendicular bisector is in the first Brillouin zone. If you
cross only one perpendicular bisector, you are in the second Brillouin
zone, and so forth.
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Fig. 13.5 First, second, third, and
fourth Brillioun zones of the square lat-
tice. All of the lines drawn in this figure
are perpendicular bisectors between the
central point 0 and some other recipro-
cal lattice point. Note that zone bound-
aries occur in parallel pairs symmetric
around the central point 0 and are sep-
arated by a reciprocal lattice vector.

In Fig. 13.5, we show the Brillouin zones of the square lattice. A few
general principles to note:

(1) The first Brillouin zone is necessarily connected, but the higher
Brillouin zones typically are made of disconnected pieces.

(2) A point on a Brillouin zone boundary lies on the perpendicular
bisector between the point 0 and some reciprocal lattice point
G. Adding the vector −G to this point necessarily results in a
point (the same distance from 0) which is on another Brillouin
zone boundary (on the bisector of the segment from 0 to −G).
This means that Brillouin zone boundaries occur in parallel pairs
symmetric around the point 0 which are separated by a reciprocal
lattice vector (see Fig. 13.5).

(3) Each Brillouin zone has exactly the same total area (or volume in
three dimensions). This must be the case since there is a one-to-
one mapping of points in each Brillouin zone to the first Brillouin
zone. Finally, as in one dimension, we claim that there are exactly
as many k-states within the first Brillouin zone as there are unit
cells in the entire system.17 17Here’s the proof for a square lat-

tice. Let the system be Nx by Ny unit
cells. With periodic boundary condi-
tions, the value of kx is quantized in
units of 2π/Lx = 2π/(Nxa) and the
value of ky is quantized in units of
2π/Ly = 2π/(Nya). The size of the
Brillouin zone is 2π/a in each direction,
so there are precisely NxNy different
values of k in the Brillouin zone.

Note, that as in the case of the Wigner–Seitz cell construction, the
shape of the first Brillouin zone can look a bit strange, even for a rela-
tively simple lattice (see Fig. 12.7).
The construction of the Brillouin zone is similar in three dimensions

as it is in two, and is again entirely analogous to the construction of the
Wigner–Seitz cell in three dimensions. For a simple cubic lattice, the
first Brillouin zone is simply a cube. For fcc and bcc lattices, however,
the situation is more complicated. As we mentioned in the Aside at
the end of Section 13.1.3, the reciprocal lattice of the fcc lattice is bcc,
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and vice-versa. Thus, the Brillouin zone of the fcc lattice is the same
shape as the Wigner–Seitz cell of the bcc lattice! The Brillouin zone
for the fcc lattice is shown in Fig. 13.6 (compare to Fig. 12.13). Note
that in Fig. 13.6, various k-points are labeled with letters. There is a
complicated labeling convention that we will not discuss, but it is worth
knowing that it exists. For example, we can see in the figure that the
point k = 0 is labeled Γ, and the point k = (2π/a)ŷ is labeled X .
Now that we can describe the fcc Brillouin zone, we finally have a way

to properly describe the physics of waves in some real crystals!
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Fig. 13.6 First Brillouin zone of the fcc
lattice. Note that it is the same shape
as the Wigner–Seitz cell of the bcc lat-
tice, see Fig. 12.13. Special points of
the Brillioun zone are labeled with code
letters such as X, K, and Γ. Note that
the lattice constant of the conventional
unit cell is 4π/a (see Exercise 13.1).

13.3 Electronic and Vibrational Waves in

Crystals in Three Dimensions
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Fig. 13.7 Electronic excitation
spectrum of diamond (E = 0 is the
Fermi energy). The momentum,
along the horizontal axis is taken
in straight line cuts between special
labeled points in the Brillouin zone.
Figure is from J. R. Chelikowsky and
S. G. Louie, Phys. Rev. B 29, 3470
(1984), http://prb.aps.org/abstract/
PRB/v29/i6/p3470 1. Copyright
American Physical Society. Used by
permission.

In Fig. 13.7 we show the electronic band-structure (i.e., dispersion re-
lation) of diamond, which can be described as an fcc lattice with a
diatomic basis (see Fig. 12.21). As in the one-dimensional case, we can
work in the reduced zone scheme where we only need to consider the
first Brillouin zone. Since we are trying to display a three-dimensional
spectrum (energy as a function of k) on a one-dimensional diagram, we
show several single-line cuts through reciprocal space.18 Starting on the
left of the diagram, we start at the L-point of the Brillouin zone and
show E(k) as k traces a straight line to the Γ point, the center of the
Brillouin zone (see Fig. 13.6 for the labeling of points in the zone). Then
we continue to the right and k traces a straight line from the Γ point to
the X point. Then we make a straight line from X to K and then X
back to Γ.19 Note that the lowest band is quadratic at the center of the
Brillouin zone (a dispersion �

2k2/(2m∗) for some effective mass m∗).
Similarly, in Fig. 13.8, we show the phonon spectrum of diamond.

There are several things to note about this figure. First of all, since
diamond has a unit cell with two atoms in it (it is fcc with a basis of
two atoms) there should be six modes of oscillation per k-points (three
directions of motion times two atoms per unit cell). Indeed, this is what
we see in the picture, at least in the central third of the picture. In the
other two parts of the picture, one sees fewer modes per k-point, but
this is because, due to the symmetry of the crystal along this particular
direction, several excitation modes have exactly the same energy. (Note
examples at the X-point where two modes come in from the right, but
only one goes out to the left. This means the two modes have the same
energy on the left of the X point.) Secondly, we note that at the Γ-
point, k = 0, there are exactly three modes which come down linearly to
zero energy. These are the three acoustic modes—the higher one being a
longitudinal mode and the lower two being transverse. The other three
modes, which are finite energy at k = 0, are the optical modes.

18This type of plot, because it can look like a jumble of lines, is sometimes called a
“spaghetti diagram”.
19In fact if one travels in a straight line from X to K and continues in a straight line,
one ends up at Γ in the neighboring Brillouin zone!
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Chapter Summary

• The reciprocal lattice is a lattice in k-space defined by the set of
points such that eiG·R = 1 for allR in the direct lattice. Given this
definition, the reciprocal lattice can be thought of as the Fourier
transform of the direct lattice.

• A reciprocal lattice vectorG defines a set of parallel equally spaced
planes via G · r = 2πm such that every point of the direct lattice
is included in one of the planes. The spacing between the planes is
d = 2π/|G|. If G is the smallest reciprocal lattice vector parallel
to G then this set of planes is a family of lattice planes, meaning
that all planes intersect points of the direct lattice.

• Miller Indices (h, k, l) are used to describe families of lattice planes,
or reciprocal lattice vectors.

• The general definition of Brillouin zone is any unit cell in reciprocal
space. The first Brillouin zone is the Wigner–Seitz cell around the
point 0 of the reciprocal lattice. Each Brillouin zone has the same
volume and contains one k-state per unit cell of the entire system.
Parallel Brillouin zone boundaries are separated by reciprocal lat-
tice vectors.

Fig. 13.8 Phonon spectrum of dia-
mond (points are from experiment,
solid line is a modern theoretical
calculation). Figure is from A. Ward
et al., Phys. Rev. B 80, 125203
(2009), http://prb.aps.org/abstract/
PRB/v80/i12/e125203, Copyright
American Physical Society. Used by
permission.
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Exercises

(13.1) Reciprocal Lattice

Show that the reciprocal lattice of a fcc (face-
centered cubic) lattice is a bcc (body-centered cu-
bic) lattice. Correspondingly, show that the recip-
rocal lattice of a bcc lattice is an fcc lattice. If
an fcc lattice has conventional unit cell with lat-

tice constant a, what is the lattice constant for the
conventional unit cell of the reciprocal bcc lattice?

Consider now an orthorhombic face-centered lat-
tice with conventional lattice constants a1, a2, a3.
What it the reciprocal lattice now?
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(13.2) Lattice Planes

Consider the crystal shown in Exercise 12.3. Copy
this figure and indicate the [210] direction and the
(210) family of lattice planes.

(13.3) Directions and Spacings of Crystal Planes

� ‡Explain briefly what is meant by the terms
“crystal planes” and “Miller indices”.

� Show that the general direction [hkl] in a cubic
crystal is normal to the planes with Miller indices
(hkl).

� Is the same true in general for an orthorhombic
crystal?

� Show that the spacing d of the (hkl) set of
planes in a cubic crystal with lattice parameter a
is

d =
a√

h2 + k2 + l2

� What is the generalization of this formula for
an orthorhombic crystal?

(13.4) ‡Reciprocal Lattice

(a) Define the term Reciprocal Lattice.

(b) Show that if a lattice in 3d has primitive lattice
vectors a1, a2 and a3 then primitive lattice vectors
for the reciprocal lattice can be taken as

b1 = 2π
a2 × a3

a1 · (a2 × a3)
(13.13)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
(13.14)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
(13.15)

What is the proper formula in 2d?

(c) Define tetragonal and orthorhombic lattices.
For an orthorhombic lattice, show that |bj| =
2π/|aj|. Hence, show that the length of the recip-
rocal lattice vector G = hb1 + kb2 + lb3 is equal
to 2π/d, where d is the spacing of the (hkl) planes
(see question 13.3)

(13.5) More Reciprocal Lattice

A two-dimensional rectangular crystal has a unit
cell with sides a1 = 0.468 nm and a2 = 0.342 nm.

(a) Draw to scale a diagram of the reciprocal lat-
tice.

� Label the reciprocal lattice points for indices in
the range 0 � h � 3 and 0 � k � 3.

(b) Draw the first and second Brillouin zones using
the Wigner–Seitz construction.

(13.6) Brillouin Zones

(a) Consider a cubic lattice with lattice constant
a. Describe the first Brillouin zone. Given an
arbitrary wavevector k, write an expression for
an equivalent wavevector within the first Brillouin
zone (there are several possible expressions you can
write).

(b) Consider a triangular lattice in two dimen-
sions (primitive lattice vectors given by Eqs. 12.3).
Find the first Brillouin zone. Given an arbitrary
wavevector k (in two dimensions), write an expres-
sion for an equivalent wavevector within the first
Brillouin zone (again there are several possible ex-
pressions you can write).

(13.7) Number of States in the Brillouin Zone

A specimen in the form of a cube of side L has
a primitive cubic lattice whose mutually orthogo-
nal fundamental translation vectors (primitive lat-
tice vectors) have length a. Show that the number
of different allowed k-states within the first Bril-
louin zone equals the number of primitive unit cells
forming the specimen. (One may assume periodic
boundary conditions, although it is worth thinking
about whether this still holds for hard-wall bound-
ary conditions as well.)

(13.8) Calculating Dispersions in d > 1*

(a) In Exercises 9.8 and 11.9 we discussed disper-
sion relations of systems in two dimensions (if you
have not already solved those exercises, you should
do so now).

� In Exercise 11.9, describe the Brillouin zone
(you may assume perpendicular lattice vectors with
length a1 and a2). Show that the tight-binding dis-
persion is periodic in the Brillouin zone. Show that
the dispersion curve is always flat crossing a zone
boundary.

� In Exercise 9.8, describe the Brillouin zone.
Show that the phonon dispersion is periodic in the
Brillouin zone. Show that the dispersion curve is
always flat crossing a zone boundary.

(b) Consider a tight binding model on a three-
dimensional fcc lattice where there are hopping
matrix elements −t from each site to each of the
nearest-neighbor sites. Determine the energy spec-
trum E(k) of this model. Show that near k = 0
the dispersion is parabolic.


