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9.2 The Drudemodel for metals

For simple metals, we can apply the theory of Paul Drude, which was developed around
1900.1 This model is that of a free electron gas with “dirt” used to scatter electrons,
resulting in a scattering time of τ . To analyze this system, we use the relaxation time
approximation. From this model we can derive the dielectric function by starting with the
equation of motion for the electron including the relaxation time τ . Hence,

mẍ = −eE − mẋ
τ

,

or (by taking the time Fourier transform)

−mω2x(ω) = −imωγ x(ω) − eE(ω), (9.25)

where γ ≡ 1
τ . Solving for x gives us

mx(ω) = −eE(ω)

−ω2 + iωγ
. (9.26)

The polarization per unit volume P(ω) is then given by

P(ω) = −nex(ω) = αE(ω). (9.27)

We may obtain �(ω) through the relation

� = 1 + 4πα. (9.28)

This allows us to identify the real and imaginary parts of � for this model as

�1(ω) = 1 − ω2
pτ

2

1 + ω2τ 2
(9.29)

and

�2(ω) = ω2
pτ

ω(1 + ω2τ 2)
, (9.30)

where ωp is the plasma frequency
�

4πne2

m . These functions are shown in Fig. 9.2.
This calculation also yields

σ1(ω) = ω�2(ω)

4π
= ω2

pτ

4π(1 + ω2τ 2)
. (9.31)

1 P. Drude, “Zur Elektronentheorie der metalle,” Ann. Physik 306(1900), 566.



190 9 Electronic transitions and optical properties of solids

e2 (ω)

e1 (ω)

ω

D
ie

le
ct

ri
c 

fu
nc

tio
n 

e(
ω

)

0

Figure 9.2 Schematic figure for �1(ω) and �2(ω) within the Drude theory. At highω, �1(ω)→ 1.

To get all the desired optical properties, we need only use the relations for the optical
constants n and k. Thus, with two material parameters, γ (typical value ∼ 1013/sec) and
ωp (typical value ∼ 1015/sec), we can calculate the optical properties of simple metals.

We now explore the reflectivity of a metal in three characteristic frequency regions. For
region I, which is for very low ω, we consider ω � ωp and ωτ � 1, corresponding to many
scatterings in one EM wave period. In this regime, for the typical values given above, the
equations become

�1(ω) ≈ −ω2
pτ

2 ∼ −104 (9.32)

and

�2(ω) ≈ ω2
pτ

ω
= ω2

pτ
2

ωτ
� |�1(ω)|. (9.33)

This dominance of �2(ω) allows us to calculate N(ω) as follows

N(ω) = ωpτ√
ωτ

�
1 + i√

2

�
. (9.34)

This condition sets the real and imaginary parts of N(ω) equal and, since N = n + ik, then
|n| = |k| � 1. Thus, we can calculate the reflection or reflectivity as

R = (n − 1)2 + k2

(n + 1)2 + k2
≈ 1 − 2

n
= 1 − 2

√
2ωτ

ωpτ
≈ 1, (9.35)

indicating a large reflectivity in this regime. The reflectivity can be written in terms of the
conductivity, using Eq. (9.14), as

R(ω) = 1 −
(

2ω

πσ1(0)
, (9.36)
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which is the reason why highly conducting metals (σ � 1) reflect well at low ω. Equation
(9.36) is often written as

1 − R(ω) ∼ √
ω, (9.37)

and is known as the Hagen–Rubens relation,2 and this low-frequency region is referred to
as the Hagen–Rubens region.

For region II, ωτ � 1 and ω < ωp, corresponding to the electron oscillating in the EM
field many times before being scattered. The corresponding equations are

�1(ω) = 1 − ω2
pτ

2

1 + ω2τ 2
≈ 1 − ω2

p

ω2
(9.38)

and

�2(ω) ≈ ω2
p

ω2(ωτ )
� |�1(ω)|. (9.39)

This gives a reflectivity of

R(ω) ≈ 1 − 2

ωpτ
≈ 1, (9.40)

and explains why simple metals reflect in this frequency range as well. The reflectance is
independent of ω, which explains the shininess and colorlessness of many metals.

For region III, which comprises very high ω, ω > ωp, the corresponding equations are

�1(ω) = 1 − ω2
pτ

2

1 + ω2τ 2
> 0, (9.41)

with

k(ω) → 0 (9.42)

and

n(ω) = √
�1 → 1, (9.43)

which implies that the metal is transparent. Figure 9.3 summarizes these results with a plot
of 1 − R(ω) vs. ω. The abrupt increase in the transmission (since k(ω) = 0 in this high ω

range) near ωp, as shown in Fig. 9.3, is an excellent experimental measure of the plasma
frequency.

For the Hagen–Rubens region, we can also estimate other relevant properties. The
absorption coefficient η = 2ωk

c becomes very large because

k(ω) = ωpτ√
2ωτ

. (9.44)

2 The relation was discovered by Ernst B. Hagen and Heinrich Rubens in 1903.
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Figure 9.3 Frequency dependence of log10(1 − R(ω)) within the Drude theory.

Also, the EM wave skin depth

δ = c

ωk
= c

ω

√
2ωτ

ωpτ
(9.45)

can be related to the dc conductivity σ1(0) = ne2τ
m , and we have

δ = c√
2πσ1(0)ω

∼ ω− 1
2 . (9.46)

Hence, the simple Drude model, which is based on intraband transitions arising from
scattering centers, gives the essential features of the optical properties of simple metals.

9.3 The transverse dielectric function

As discussed in Section 9.1, when examining the physics of optical properties, the
appropriate dielectric function to use for determining response functions for transverse EM
probes is the “transverse dielectric function.” In our previous discussions, in Chapter 8 for
example, we considered a longitudinal field with q � E, because we assumed that

∇2φ = −4πδρ �⇒ ∇ · E = −4πδρ. (9.47)

As q → 0, this approximation is acceptable for transverse EM waves in a cubic or homo-
geneous system. However, more generally for an optical response, we need to consider a
current–current response function derivation of the self-consistent field dielectric function.


