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Self-Consistent Field Approach to the Many-Electron Problem*
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The self-consistent Geld method in which a many-electron system is described by a time-dependent
interaction of a single electron with a self-consistent electromagnetic field is shown to be equivalent for
many purposes to the treatment given by Sawada and Brout. Starting with the correct many-electron
Hamiltonian, it is found, when the approximations characteristic of the Sawada-Brout scheme are made,
that the equation of motion for the pair creation operators is the same as that for the one-particle density
matrix in the self-consistent 6eld framework. These approximations are seen to correspond to (1) factoriza-
tion of the two-particle density matrix, and (2) linearization with respect to off-diagonal components of
the one-particle density matrix. The complex, frequency-dependent dielectric constant is obtained straight-
forwardly from the self-consistent 6eld approach both for a free-electron gas and a real solid. It is found to
be the same as that obtained by Nozieres and Pines in the random phase approximation. The resulting
plasma dispersion relation for the solid in the limit of long wavelengths is discussed.

HE electromagnetic properties of crystals have
long been studied by considering the time-

dependent interaction of a single particle with a self-
consistent electromagnetic field. ' This procedure seems
plausible for studying the response of electrons to any
external perturbation, and Bardeen, ' WolG, ' Lindhard, '
Frolich and Pelzer, ' Ferrell, ' and others' have used
this or a closely related approach with considerable
success in discussing such phenomena as the electron-
phonon interaction, the frequency and wave-number
dependence of the dielectric constant, plasma oscilla-
tions, and characteristic energy losses in solids. These,
and similar phenomena, have also been studied on the
basis of more sophisticated treatments of the many-
body problem' " with largely identical results. The

explicit relationship of the self-consistent field approach
(e.g. , Lindhard') to the many-body approach (e.g. ,
Sawada and Brout" ") has not been stated. It is the
purpose of this note to examine this relationship and
to show that for many problems the two approaches
may be regarded as rigorously equivalent. We do so
by showing that the approximations introduced by
Sawada and Brout are in fact sufhcient to deduce the
equation of the self-consistent field approach.

1. SELF-CONSISTENT FIELD, OR SCF, METHOD

We begin with a convenient formulation of the SCF
method. We consider the single-particle Liouville
equation

i7i(Bp/r)t) = LH,p It
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as describing the response of any particle of the system
to the self-consistent potential V(x,t), where p is the
operator represented by the single-particle density
matrix. The single-particle Hamiltonian in (1) is

H =Ho+ V (x,t), (2)

where He ——p'/2m is the Hamiltonian of a free electron
satisfying Schrodinger's equation Hv

~
k) =Et,

~
k), and

~k)=Q &e'~ *, 0 being the volume of the system. We
expand the operator p in the form p=p&"+p&'&. The
unperturbed (Dirac or von Neumann) density matrix
has the property p'v' ~k)=fo(E~) ~k), where fo(E&) is the
distribution function. Use of the von Neumann density
matrix permits us to treat systems at finite temper-
atures. We now Fourier-analyze V(x,t) in the form

V(x, t) =p, . V(q', t)e-'s", (3)

and linearize Eq. (1) by neglecting products of the
type Vp&". This approximation is equivalent to first-
order self-consistent perturbation theory. Taking

(1958),Nuovo cimento 9, 470 (1958);Phys. Rev. 111,442 (1958),
and work to be published.
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ih(B/R) (k I p
"&

I k+q&
=(kIL&o p"'Elk+q&+(kILv, p "&)lk+q&
= (E.—E.+.)(kl p"' lk+q&

+D'(E",)-f.(E.)jV(q, t), (4)

where (kl Vlk+q&= V(q, t). The potential V consists
of an external potential Vo plus the screening potential
V„which is related to the induced change in electron
density,

n= Trf8(x, —x)po&}
=0—'P, e—'& *Pk (k'Ipu& lk'+q&, (5)

fo(Ek+ ) fo(Ek)
0(o&,q) =1—lim i&, Q . (10)

k Ego Ek —ho&+—ihn

This result was first obtained by Lindhard4 with the
SCF method and later by Nozieres and Pines" using a
many-particle approach based on the random-phase
approximation for a Fermi gas at zero temperature.

2. PROOF OF EQUIVALENCE

In this section, we show that the approximations
required to obtain (1) or (8) from the many-electron
Hamiltonian are just those characteristic of the
Sawada-Brout scheme. It proves useful to consider the
total second-quantized Hamiltonian in the coordinate
representation:

by Poisson's equation:

V'V, = —%re'n.

Here l&(x,—x) is the charge density operator, x, being
the position operator and x referring to a specific
point in space. We thus find

(7) K= —
I I

~ Pt(x)Pg(x)dx
~h'q

i2 )~
V, (q t)=i, pk (k'Ip&'&Ik'+q),

where i&, =inc'/q'Q. By substituting the above expres-
sion giving V. for V in Eq. (4) we obtain the Loiuville-
Poisson equation determining (k I p "&

I k+q& in the
absence of an external perturbation:

1
t ( eo

+-
I

— I4'(y)4'(x)4 (x)4 (y)dx~y (»)

matrix elements between states k and k+q, we thus time dependence as Vo(q, t). The induced change in
obtain electron density e(q, t) may then be calculated from (5)

and 0(o&,q) deduced from the field equations (9a, b, c).
YVe find

—iqP(q, t) = equi(q, t),

and the electric field 8(q, t) is given by

(9b)

eB(q,t) = —iqV(q, t). (9c)

Equation (4) is readily solved for (klp&" lk+q) by
assuming that (k I

p&" (k+q& and V, (q, t) have the same

ih(8/0&t) (k I
p~'&

I k+q)
(Ek Ek+0)(kl p ' lkyq&

+i&q/fo(Eky ) —fo(Ek)j Qk (k'lp ' lk'+q& (8)

We have derived Eq. (8) in order to provide an
explicit basis for comparison of the SCF method with
the Sawada-Brout scheme. In solving problems by the
SCF method, however, one can usually avoid the
explicit expression of U, in terms of p() within the
equation of motion by making an Amsats concerning
the time dependence of V(q, t). To illustrate this point,
we calculate the frequency and wave-number depend-
ence of the longitudinal dielectric constant 0(o&,q). We
imagine that the external potential Vo(q, t) acts on the
system with time dependence e 'e'"', where n —+ 0
corresponds to an adiabatic turning on of the perturba-
tion. This potential polarizes the system. It follows
from the definition of the dielectric constant and the
Fourier analysis prescribed by Eq. (3) that

P( t)=(4 ) 'L'( ) 1j&( ") (9 )

The polarization P(q, t) is related to the induced change
in electron density by V' P=ee or

The operator p(x) =pk ake'k * develops in time accord-
ing to

ih(B/at)P(x) = L&,3'.], (12)

where a~,ai, are, respectively, annihilation and creation
operators referring to the state k and satisfy the usual
commutation rules for Fermi particles. Performing the
commutation indicated in (12), we find the Schrodinger-
like equation

(13)ih(a/at)p(x) =H.,(x)g(x),
with

t'h'
p r e'

If.,(x) =—
I l~.'+ dy p(y, y)
&2m) & Ix—yl

—=If.()+V.,(). («)

p" (x,x') =0'(x')0 (x)
=0 ' Qkk p.,(k,k') expLi(k x—k'. x') j, (15)

and satisfy the equations of motion

ih(0&/Bt) p,o (x,x') =H,o (x)p,o (x,x')
—p,o (x,x') H,o(x'), (16)

ih(0&/@) pox (ki k+q) = (Ek Ek+0)pop(k k+q)
+2k. ~, Lp" (k', k'+q')
Xp.o(k+q', k+q)
—p" (k, k+q —q') p"(k', k'+q') 3. (17)

The density matrix operators p,o(x,x') and p o(k,k')
in the x and k representations, respectively, are defined

by
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@&p"&"= &III",p"j&".

On the other hand, (1) is evidently

@&p")A =
I (II")",& ")"3,

(2o)

(21)

because V, = (V,~&A, and therefore P= &H„„&„„according
to (2) and (14). Thus the approximation required for
obtaining (1) from (18) is the replacement of the
expectation value of a product of density matrices by
the product of the expectation values, e.g. ,

&p..(yy) p..(x,x'))A. ~ &p..(y, y) &A (po (x x ))A ~ (22)

The approximation in (22) will be designs, ted as
"Hartree factorization. " In order to arrive at the
equation corresponding to (1) which contains exchange,
we would have to replace the right side of (22) by the
appropriately antisymmetrized combination (Hartree-
Fock factorization).

In deriving Eqs. (4) and (8) the further approxima-
tion of linearization has been made. Without lineariza-
tion, Eq. (8) would have been the factorized form of
Eq. (17):

ih (a/Bt) (k I p I k+q&
= (E.—E.+,) &k I p Ik+q&

+Z'~ "Hk'I p Ik'+q'&&k+q'I p Ik+q&
—(k

I p I
k+q —q')(k'I p I

k'+q')g, (23)
where

(klplk+q)=(p. „(k, k+q)), . (24)

By neglecting all terms q'W q in (23), which corresponds
to the random phase approximation' (RPA), we find

v(~/@)&k I p lk+ q&= (&~—&~+.) &k I p lk
+v,L(k+q Iplk+q)
—&klplk&j&'&k'lplk'+q). (25)

Equations (25) and (8) are seen to be almost identical.
The correspondence with the formulation of the SCF
method given in Sec. 1 is established completely by
identifying (k I p I k) in (25) with fo(E~) in (8) and

In Eq. (16), H„(x) operates only on x, and Ho~(x')
operates only on x'. Equations (16) and (17) are exact.

We observe that the right-hand member of Eq. (16)
is just the commutator of H,v(x) and p,v(x,x') in a,

mixed representation. In complete opera, tor form, (16)
becomes

ihp" =L&"p"l.
Equation (18) is just the formal analog of Eq. (1) in
second quantization. For a single system in the state
+ at time ], we have

p = (q',p.~q'),

for the value of p at time t. For an ensemble of systems,
(19) is replaced by its ensemble average. We denote
either average by (p.,)A, . Without loss of generality we

may average (18) and obtain

(klplk+q) with (klpo&lk+q). The RPA is therefore
seen to be equivalent to treatment of the o8 diagonal
elements of p as perturbations with respect to the
diagonal components.

Sawada and Brout have derived an approximate
equation of motion of the electron-hole pair creation
operator ugyqtog pop(k, k+q). The approximations
they employ are (1) the RPA and (2) the replacement
of diagonal components p ~(k,k) by their expectation
values for the free-electron gas. The resulting equation
for p,v (k, k+ q),

i'�(8/Bt)p.v (k, k+ q)
= (&~—&~+,)p.p(k, k+q)+v, Lfo(&~+,) —fo(Zw) j

yP, p.,(l ', I '+q), (26)

has the same form as Eq. (25) for &klplk+q) which
corresponds to Eq. (8) in the SCF method. This the
SCF equat~'orl, is simpty the average of the Sovoada Brout-
eqlatioe. Both schemes involve the RPA as well as a
form of factorization. The extra generality of the
scheme of Sawada and Brout resulting from their
partial averaging is unnecessary for calculating proper-
ties of the system associated with one-electron operators
only. Such a one-electron operator 0 has the form
O,v= tr{O,vp, v) in second quantization. Its expectation
value (O„~&A,=- (4,0,~+) =tr{Op) involves only (p,~&A„

=p. The same value of &O,v)A, clearly obtains whether
we solve the SCF equation for p or use the Sawada-
Brout scheme. Therefore, the simplicity and ease of
interpretation of the SCF method commend it for such
problems as the calculation of the dielectric constant
(Sec. 1) and the response of the system to a general
external perturbation.

The SCF method does not yield by itself results
depending on two-electron operators such as those
entering the correlation energy. The more general
Sawada-Brout equation (26), however, can be used in
such problems. Nevertheless, the SCF calculation of
the dielectric constant can be used in conjunction with
an elegant formula due to Xozieres and Pines" which
exactly relates the correlation energy of the electron
gas to its dielectric constant. Nozieres and Pines
obtain in this way the result of Sawada" and Hubbard"
for the correlation energy.

A normal-mode analysis of the SCF equation, (8)
or (25), can be performed following the procedure
used by Brout" in connection with the Sawada-Brout
equation, (26). The formal simila, rity of the two
equations ensures that the condition for the existence
of plasma oscillations and the corresponding dispersion
relation is the same in both cases, namely the vanishing
of the dielectric constant of Eq. (10). This normal
mode analysis also affords a rigorous justification of
the Aesats for the time dependence of V, used in
obtaining (10).

Particular advantages of the present formulation of
the SCF method are (1) the Liouville equation reduces
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in the classical limit to the ordinary Boltzmann equa-
tion used in transport theory and (2) the method
applies to systems at 6nite temperatures. These
features are not shared by formulations using the
Hartree equation as the point of departure. '' As a
direct consequence of the normal-mode analysis already
mentioned, one finds that at finite temperature the
imaginary part of the dielectric constant does not
vanish. Thus plasma oscillations do not exist as
independent excitations of the system at 6nite temper-
ature, and the plasma resonance is broadened. Further,
the method is readily generalized to real crystals, as
described in the next section.

which extends over the unit cell, we hand the generaliza-
tions of Eqs. (4), (5), and (8) to be, respectively,

i'(8/8/)(k/I p"'
I
k+q, /')

= (Eki —Ek+o, i)(k/lp lk+q, / )
+[fo(Ek+, , i ) —fo(Eki) jV(q, /) (k/I k+q, /'), (28)

zz=f/ —' p, e-'o *Q, , (k+q, /'I k/)

X(k/I p&» Ik+q, /'), (29)

and

zk(8/R) (k/I R
I k+q, /')

= (Ekl Ek+o, l')(k/IRlk+q, /')

+z" I (k/Ik+q, /') I'[fo(Ek+o, i ) —fo(Eki)3
Xp„,p„„,(k'~ IR Ik'+ q, ~'), (30)

where

(k/IRIk+q, /')= (k+q, /'lk/)(k/lp&'& lk+q, /'). (31)

"E. N. Adams, Phys. Rev. 85, 41 t', 1952).

3. APPLICATIONS TO REAL SOLIDS

To illustrate the simplicity and utility of the SCF
method, we calculate the dielectric constant for a real
solid and examine the plasma dispersion relation for
plasma oscillations characterized by q—0. We make the
simplifying assumption that the core states of the atoms
composing the solid are sufficiently tightly bound and
the valence or conduction bands are suKciently broad
that local field corrections and hence umklapp processes
may be neglected. The results obtained in elementary
fashion by the SCF method agree with those previously
obtained by Adams, ' WolG, ' Nozieres and Pines, "
and others.

The generalization of the SCF method as presented
in Sec. 1 is obtained by replacing the Hamiltonian Ho by
that for an electron in the unperturbed periodic lattice
and the wave functions lk) by Ik/)=Q 'zzki(x)e'k'*.
Here N»(x) is the spatially periodic part of the wave
function corresponding to wave vector k and. band /.

In terms of the integral

f
(k/I k+qy / )=4 zzkl (x)zzk+o, l'( )~x, x(2/)

~0

The longitudinal frequency and wave-number de-
pendent dielectric constant again is obtained straight-
forwardly from the relationship V' P=ezz. We find

.(M,q)=1—lim. , P l(k/lk+q, /')I

fo(Ek+o, i ) fo—(Eki)
X . (32)

Ek+.o i. E,i
—/'zoo+—zhn

The Liouville-Poisson equation (30) and the expression
for the dielectric constant (32) differ from that for
the free electron case in that v, is replaced by
z, I (k I k+q, /') I' and the summation over wave number
is replaced by one extending over the band indices
as well.

It is interesting to exhibit explicit expressions for the
real and imaginary parts, oi(&u, q) and oo(oi,g), of the
dielectric constant, which are easily given in the limit

q ~ 0. Perturbation theory in this limit yields

I
(k/Ik+q, /') I'=Biz+(1—/'«)(q/zzzo~ii)'IPii "I', (33)

where

P«~"=zt~
J

NkP*P"zzkid x,
0

p" being the momentum opera, tor associated with the
direction of propagation of the wave q, and Sm~ ~

=E&& —E&&. After expanding other quantities depend-
ing on q about q =0, we find to lowest order

oz(&o,0) =1—(e/zrkoi) P d k fo(Eki)& Eki/&ko

+zzz
—'(e/zr)' P' (P )

d'k
ill

Xfo(Eki)fi i"(~i i' —~') ') (34)

oz((0,0) = (e'/q'zr) p d'k fo(Eki)
J

Xp(Ek+o, t Ekl @~) ~(Ek—o, l Ekl+/«o)l

+~—'(e/mo)' p' "d'k[fo(Eki) —fo(Eki )]

x
I
p«, o

I
zp(Ek, , —Ek,—/zoi). (35)

Here 6' denotes that principal parts of the corresponding
integrals are to be taken and the prime on the summa-
tions that terms l=l' are to be excluded. Further the
oscillator strength

fi i"= (2/&~i'lzzz)
I
~l'~" I'

has been introduced.
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VVe note that the terms in e& and e2 consist of intra-
band and interband contributions. In e2 the first term,
corresponding to one-electron intraband excitations,
has not been approximated in order to exhibit its close
relationship to the free electron case. The second term
is associated with interband optical absorption. This
is not surprising since for q

=0 the transverse dielectric
constant, which describes the interaction of the solid
with electromagnetic waves, can be shown to equal the
longitudinal dielectric constant which is associated
with collective motion of the electrons. This leads to
the result first pointed out by WolfP and by Frohlich
and Pelzer' that the plasma frequency of infinite
wavelength and the damping of these oscillations in
the solid may be deduced from optical data. Further
it is seen that even for q very small, with the exception
of semiconductors or semimetals, ~2 does not vanish
for solids having any reasonable structure of the
conduction bands so that plasma oscillations are always
damped and cannot strictly exist as normal modes of
the system. The plasma frequency in the limit of
small q is obtained from ei(~,0) =0.

In the case of insulators, for which all bands l ~& L are
filled and those for which l)L are empty, the second
term of Eq. (34) vanishes. Because of the relationship

fi i"= fn ", the d—ouble sum in the third term of (34)
may be written in the following two alternative forms:
(i) Pi(r, i~i, an, d (ii) Pi&r„i.. The first form immedi-
ately leads to the theorem that the plasma frequency
of an insulator cannot fall inside the band gap. The
second form permits the deduction of the plasma
frequency in the limiting case that co&(co„, where Sco,„is
the energy difference between the valence and core
bands, and that co))co~, for all bands l' that contribute
appreciably to the f-sum rule

P if( „I'=1—(m/Ii') O'E),„/Bk„'.

In that case the plasma frequency is given by
&o„'=4~v„e'/e, m where e„ is the density of va, lence
electrons, e, is the dielectric constant due to the core,
and m is the free electron mass. We note also that the
condition co))co~, insures that ~2 is small so that the
plasma oscillations are only weakly damped.

For a "free-electron" metal with spherical surfaces
of constant energy and a single partly occupied con-

duction band l, the second term of (34) becomes
—4~vie'/ogm* where m* is the isotropic effective mass
of the conduction band and ~z& is the electron density
in the band. The third term gives rise to a shift of the
plasma frequency due to the presence of interband
transitions. In the limit that this term is small, the
shift agrees with that calculated by Adams. '4 The
shift may be neglected in the limit that or„&(~« for all
bands l' contributing appreciably to the f-sum rule.
This is properly true only in semiconductors and
possibly semimetals. On the other hand, in the case of
a metal having a number of close-lying valence bands
e in addition to the conduction band /, well separated
from the core states, for which co~&)co~, for all bands l'
contributing appreciably to the f-sum rule, we find
again that or~'=4ne„&e'/e, m. Here e„& is the density of
valence plus conduction electrons. This shows that the
plasma frequency is the same for metals and insulators
provided that the plasma frequency is su%ciently large.

Finally, in the case of simple intrinsic semiconductors
or semimetals, where the plasma frequency is sufficiently
small, the interband term in Eq. (34) gives rise to a
real dielectric constant e due to the filled core and
almost completely filled valence band. Collective
motions can therefore exist as independent normal
modes. Here, however, we have the simultaneous
presence of an electron and a hole plasma. As first
pointed out by Pines, " the normal modes of these
interacting plasmas correspond to "optical" and
"acoustical" vibrations just as in the case of lattice
vibrations of a solid containing two atoms per unit
cell. From Eq. (34) it is immediately seen that the
optical mode frequency for infinite wavelength is
cu„'= (4 res'/ )(em„* '+m„* '), where m„* and m„* are
the effective masses associated, respectively, with the
conduction and valence band. The acoustic frequencies
vanish at infinite wavelengths and are obtained only if
the intraband terms in Eq. (32) are expanded to a
higher order in g. If this is done, the results agree with
those of Nozieres and Pines. "
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