
Electronic specific heat
In solid state physics the electronic specific heat, sometimes called the electron heat capacity, is the specific
heat of an electron gas. Heat is transported by phonons and by free electrons in solids. For pure metals,
however, the electronic contributions dominate in the thermal conductivity. In impure metals, the electron mean
free path is reduced by collisions with impurities, and the phonon contribution may be comparable with the
electronic contribution.
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Although the Drude model was fairly successful in describing the electron motion within metals, it has some
erroneous aspects: it predicts the Hall coefficient with the wrong sign compared to experimental measurements,
the assumed additional electronic heat capacity to the lattice heat capacity, namely  per electron at
elevated temperatures, is also inconsistent with experimental values, since measurements of metals show no
deviation from the Dulong–Petit law. The observed electronic contribution of electrons to the heat capacity is
usually less than one percent of . This problem seemed insoluble prior to the development of quantum
mechanics. This paradox was solved by Arnold Sommerfeld after the discovery of the Pauli exclusion
principle, who recognised that the replacement of the Boltzmann distribution with the Fermi–Dirac distribution
was required and incorporated it in the free electron model.
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When a metallic system is heated from absolute zero, not every electron gains an energy  as equipartition
dictates. Only those electrons in atomic orbitals within an energy range of  of the Fermi level are
thermally excited. Electrons, in contrast to a classical gas, can only move into free states in their energetic
neighbourhood. The one-electron energy levels are specified by the wave vector  through the relation 

 with  the electron mass. This relation separates the occupied energy states from the
unoccupied ones and corresponds to the spherical surface in k-space. As  the ground state distribution
becomes:

where

 is the Fermi–Dirac distribution
 is the energy of the energy level corresponding to the ground state

 is the ground state energy in the limit , which thus still deviates from the true ground
state energy.

This implies that the ground state is the only occupied state for electrons in the limit , the  takes
the Pauli exclusion principle into account. The internal energy  of a system within the free electron model is
given by the sum over one-electron levels times the mean number of electrons in that level:

where the factor of 2 accounts for the spin up and spin down states of the electron.

Using the approximation that for a sum over a smooth function  over all allowed values of  for finite
large system is given by:

where

 is the volume of the system

For the reduced internal energy  the expression for  can be rewritten as:

and the expression for the electron density  can be written as:

Reduced internal energy and electron density
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The integrals above can be evaluated using the fact that the dependence of the integrals on  can be changed
to dependence on  through the relation for the electronic energy when described as free particles, 

, which yields for an arbitrary function :

with  which is known as the density of levels or density of states per unit

volume such that  is the total number of states between  and  . Using the expressions above the
integrals can be rewritten as:

These integrals can be evaluated for temperatures that are small compared to the Fermi temperature by
applying the Sommerfeld expansion and using the approximation that  differs from  for  by terms of
order . The expressions become:

For the ground state configuration the first terms (the integrals) of the expressions above yield the internal
energy and electron density of the ground state. The expression for the electron density reduces to 

. Substituting this into the expression for the internal energy, one

finds the following expression:

The contributions of electrons within the free electron model is given by:

, for free electrons : 

Compared to the classical result ( ), it can be concluded that this result is depressed by a factor of 

 which is at room temperature of order of magnitude . This explains the absence of an electronic

contribution to the heat capacity as measured experimentally.
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Note that in this derivation  is often denoted by  which is known as the Fermi energy. In this notation,
the electron heat capacity becomes:

 and for free electrons :  using the

definition for the Fermi energy with  the Fermi temperature.

For temperatures below both the Debye temperature  and the Fermi temperature  the heat capacity of
metals can be written as a sum of electron and phonon contributions that are linear and cubic respectively: 

. The coefficient  can be calculated and determined experimentally. We report this value
below:[1]

Species Free electron value for  in Experimental value for  in 

Li 0.749 1.63

Be 0.500 0.17

Na 1.094 1.38

Mg 0.992 1.3

Al 0.912 1.35

K 1.668 2.08

Ca 1.511 2.9

Cu 0.505 0.695

Zn 0.753 0.64

Ga 1.025 0.596

Rb 1.911 2.41

Sr 1.790 3.6

Ag 0.645 0.646

Cd 0.948 0.688

In 1.233 1.69

Sn 1.410 1.78

Cs 2.238 3.20

Ba 1.937 2.7

Au 0.642 0.729

Hg 0.952 1.79

Ti 1.29 1.47

Pb 1.509 2.98
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The free electrons in a metal do not usually lead to a strong deviation from the Dulong–Petit law at high
temperatures. Since  is linear in  and  is linear in , at low temperatures the lattice contribution vanishes
faster than the electronic contribution and the latter can be measured. The deviation of the approximated and
experimentally determined electronic contribution to the heat capacity of a metal is not too large. A few metals
deviate significantly from this approximated prediction. Measurements indicate that these errors are associated
with the electron mass being somehow changed in the metal, for the calculation of the electron heat capacity
the effective mass of an electron should be considered instead. For Fe and Co the large deviations are
attributed to the partially filled d-shells of these transition metals, whose d-bands lie at the Fermi energy. The
alkali metals are expected to have the best agreement with the free electron model since these metals only one
s-electron outside a closed shell. However even sodium, which is considered to be the closest to a free electron
metal, is determined to have a  more than 25 per cent higher than expected from the theory.

Certain effects influence the deviation from the approximation:

The interaction of the conduction electrons with the periodic potential of the rigid crystal lattice
is neglected.
The interaction of the conduction electrons with phonons is also neglected. This interaction
causes changes in the effective mass of the electron and therefore it affects the electron energy.
The interaction of the conduction electrons with themselves is also ignored. A moving electron
causes an inertial reaction in the surrounding electron gas.

Superconductivity occurs in many metallic elements of the periodic system and also in alloys, intermetallic
compounds, and doped semiconductors. This effect occurs upon cooling the material. The entropy decreases
on cooling below the critical temperature  for superconductivity which indicates that the superconducting
state is more ordered than the normal state. The entropy change is small, this must mean that only a very small
fraction of electrons participate in the transition to the superconducting state but, the electronic contribution to
the heat capacity changes drastically. There is a sharp jump of the heat capacity at the critical temperature while
for the temperatures above the critical temperature the heat capacity is linear with temperature.

The calculation of the electron heat capacity for super conductors can be done in the BCS theory. The entropy
of a system of fermionic quasiparticles, in this case Cooper pairs, is:

where  is the Fermi–Dirac distribution  with  and

 is the particle energy with respect to the Fermi energy

 the energy gap parameter where  and  represents the probability

that a Cooper pair is occupied or unoccupied respectively.

The heat capacity is given by . The last two terms can be calculated:
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Substituting this in the expression for the heat capacity and again applying that the sum over  in the reciprocal
space can be replaced by an integral in  multiplied by the density of states  this yields:

To examine the typical behaviour of the electron heat capacity for species that can transition to the
superconducting state, three regions must be defined:

1. Above the critical temperature
2. At the critical temperature 
3. Below the critical temperature 

For  it holds that  and the electron heat capacity becomes:

This is just the result for a normal metal derived in the section above, as expected since a superconductor
behaves as a normal conductor above the critical temperature.

For  the electron heat capacity for super conductors exhibits an exponential decay of the form: 

At the critical temperature the heat capacity is discontinuous. This discontinuity in the heat capacity indicates
that the transition for a material from normal conducting to superconducting is a second order phase transition.
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