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The ground state energy of a three dimensional free Fermi gas of electrons in a uniform applied
magnetic field is computed. By considering how the ground state energy varies as a function of
the applied magnetic field, one obtains a T = 0 derivation of the Landau diamagnetic susceptibility
and the de Hass − van Alphen oscillations of the magnetization density. This T = 0 calculation
provides a straightforward approach to understanding the basic physical phenomena behind these
two important effects.

INTRODUCTION

The diamagnetic magnetic susceptibility χ of a free Fermi gas of electrons in a uniform applied magnetic field H
is due to the changing nature of the single particle energy eigenstates in the plane perpendicular to H, reflecting
the orbital motion of the electrons under the influence of the magnetic field. As originally computed by Landau, the
standard calculation of this effect is done at finite temperature T , summing the grand canonical partition function over
the quantum numbers kz, kx, and integer n that label the eigenstates in the magnetic field. The chemical potential
that appears in the Fermi occupation function remains constant and the sum over n is approximated by using the
Euler summation formula. Finally one must demonstrate that the magnetization density M and susceptibility χ
computed at constant chemical potential µ are equal to the desired M and χ under the true physical condition
of constant electron density ne. The calculation is involved and requires familiarity with important concepts from
statistical mechanics. It is easy to lose sight of the underlying basic physics leading to the effect.

As an alternative to this standard approach, here we present a calculation of the Landau diamagnetic susceptibility
carried out at zero temperature, T = 0. The calculation is conceptually straightforward and simple, involving only the
basic ideas familiar from the H = 0 Sommerfeld model. Specifically, the Landau level eigenstate structure of motion
in the plane perpendicular to H is used to construct the full three dimensional density of states g(ε) in the presence
of the magnetic field. One finds that the periodic Landau level structure leads to periodic van Hove singularities in
g(ε). The density of states is then integrated to determine the Fermi energy εF as a function of H for an electron
gas of fixed density ne =

∫ εF
0

dεg(ε). We find that, as a function of 1/H, εF oscillates about the zero field value εF0

with a period of ∆(1/H) = 2µ0/εF0, where µ0 is the Bohr magneton. Knowing g(ε) and εF for finite H, we then
integrate to compute the ground state energy density u =

∫ εF
0

dεg(ε)ε. From the dependence of the ground state
energy on magnetic field we compute the magnetic susceptibility, χ = −∂2u/∂H2, and recover Landau’s result. A
side product of this T = 0 approach is the calculation of the de Haas − van Alphen oscillations of the magnetization
density that are physically present in the system whenever kBT � µ0H. In particular, we find how the amplitude of
these oscillations grows as H increases.

The above steps involve only elementary mathematics, resulting in finite sums that are evaluated numerically, and
a numerical solution of an implicit equation that is easily accomplished on any modern computer. What is lacking
in analytical exactness is compensated for by the conceptual simplicity of our approach that highlights the basic
physics: the variation of the density of states and the Fermi energy in response to turning on the magnetic field. In
the following discussion, quantities with a subscript “0” are evaluated at H = 0, while those without such subscript
are at finite H > 0.
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DENSITY OF STATES

Consider a free electron moving in three dimensional space. We can partition its energy ε into two pieces: its kinetic
energy ε⊥ in the xy plane and its kinetic energy εz along the ẑ axis,

ε = ε⊥ + εz . (1)

The density of single particle states per unit volume, per energy, g(ε), can then be written as the convolution of the
two dimensional density of states per unit area g⊥(ε⊥) and the one dimensional density of states per unit length
gz(εz),

g(ε) = 2
∫ ε

0

dε⊥g⊥(ε⊥)gz(ε− ε⊥) , (2)

where the factor of 2 counts the spin degeneracy. For εz = ~2k2
z/2m, one has gz(εz)dεz = 2d|kz|/(2π), yielding,

gz(εz) =
1
π

d|kz|
dεz

=
1

2π

√
2m
~2εz

. (3)

The density of states can thus be expressed as,

g(ε) =
1

2π

√
2m
~2

∫ ε

0

dε⊥
2g⊥(ε⊥)√
ε− ε⊥

. (4)

For the ordinary case of a free electron in the absence of an applied magnetic field, ε⊥ = ~2(k2
x + k2

y)/2m, and
the two dimensional density of states is the constant g⊥(ε⊥) = m/(2π~2). Inserting this in Eq. (4) gives the familiar
density of states g0(ε),

g0(ε) =
1

2π2

(
2m
~2

)3/2√
ε . (5)

Now consider turning on a uniform applied magnetic field H = Hẑ. The motion in the xy plane is then quantized into
Landau levels with a discrete energy spectrum ~ωc(n+ 1

2 ), n = 0, 1, 2, . . ., with the cyclotron frequency ωc = eH/mc.
The degeneracy of each Landau level is H/(2φ0), where φ0 = hc/2e is the flux quantum. The two dimensional density
of states is then given by,

g⊥(ε⊥) =
H

2φ0

∞∑
n=0

δ

(
ε⊥ − ~ωc

(
n+

1
2

))
. (6)

Inserting the above into Eq. (4) then gives,

g(ε) =
1

4π2

(
2m
~2

)3/2

~ωc
nmax∑
n=0

1√
ε− ~ωc(n+ 1

2 )
(7)

where nmax is the largest integer such that ~ωc(nmax + 1/2) < ε. Defining the Fermi energy of the system in zero
magnetic field as εF0, and defining the dimensionless energy variable x = ε/~ωc, we can compare Eqs. (5) and (7)
rewriting them as,

g0(ε) =
g0(εF0)
√
x0

√
x (8)

g(ε) =
g0(εF0)
√
x0

1
2

nmax∑
n=0

1√
x− n− 1

2

, (9)

where x0 = εF0/~ωc. In Fig. 1 we plot ḡ0(ε) ≡ g0(ε)/c0 and ḡ(ε) ≡ g(ε)/c0 vs x, where c0 ≡ g0(εF0)/
√
x0. We see

that the finite field density of states g(ε) oscillates about zero field density of states g0(ε), with van Hove singularities
1/
√
x− xn at values xn = n+ 1

2 . These van Hove singularities are the manifestation of the two dimensional discrete
Landau level structure on the three dimensional density of states.
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FIG. 1: Normalized density of states ḡ0(ε) = g0(ε)/c0 for zero applied magnetic field (dotted line), and ḡ(ε) = g(ε)/c0 for finite
applied magnetic field H (solid line), where c0 ≡ g0(εF0)/

√
x0 (see text), vs x = ε/~ωc, where ωc = eH/mc is the cyclotron

frequency. In the finite field H, ḡ(ε) has van Hove singularities ∼ 1/
√
x− xn at xn = n+ 1/2.

INTEGRATED DENSITY OF STATES AND THE FERMI ENERGY

Next we define the integrated density of states,

G(ε) =
∫ ε

0

dε′g(ε′) . (10)

For the cases of zero and finite magnetic field we then get respectively,

G0(ε) = g0(εF0)εF0
2
3

(
x

x0

)3/2

(11)

G(ε) = g0(εF0)εF0
1

(x0)3/2

nmax∑
n=0

√
x− n− 1

2
. (12)

The Fermi energy is then determined by the condition that,

G(εF ) = ne , (13)

where ne is the density of electrons. For zero field, Eq. (11) then gives the familiar result,

g(εF0) =
3
2
ne
εF0

. (14)

When a magnetic field is turned on, the density of electrons ne remains constant, but the Fermi energy must shift
due to the change in the density of states g(ε). We can denote,

εF = εF0 + δε , (15)
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FIG. 2: Normalized integrated density of states Ḡ0(ε) = G0(ε)/C0 for zero applied magnetic field (dotted line), and Ḡ(ε) =

G(ε)/C0 for finite applied magnetic field H (solid line), where C0 ≡ (2/3)g0(εF0)εF0/(x0)3/2 (see text), vs x = ε/~ωc, where
ωc = eH/mc is the cyclotron frequency. If x0 corresponds to the Fermi energy at H = 0, the Fermi energy at finite H is given
by x0 + δx, where δx is determined by Ḡ(x0 + δx) = Ḡ0(x0), as shown graphically.

where δε is this shift in the Fermi energy, and is determined by the condition,

G(εF0 + δε) = G0(εF0) = ne . (16)

We illustrate this graphically in Fig. 2, where we plot Ḡ0(ε) ≡ G0(ε)/C0 and Ḡ(ε) ≡ G(ε)/C0 vs x, where C0 =
(2/3)g0(εF0)εF0/(x0)3/2. If x0 = εF0/~ωc gives the Fermi energy in zero magnetic field, then the Fermi energy at
finite field is obtained by finding the value x such that G(x) = G0(x0), as shown in the figure. Using Eqs. (11) and
(12) we can rewrite the condition of Eq. (16) as,

3
2

1
(x0)3/2

nmax∑
n=0

√
x0 + δx− n− 1

2
= 1 , (17)

where δx = δε/~ωc, and nmax is the largest integer such that nmax + 1
2 < x0 + δx. For fixed x0, the left hand side of

Eq. (17) is a monotonically increasing function of δx, and it is therefore straightforward to sum the series numerically
and determine the value of δx that satisfies this condition using the numerical method of bisection on the interval
δx ∈ [−1, 1]. We plot the resulting solution for δx vs x0 in Fig. 3. We see that δx decreases as x0 increases (i.e. H
decreases) and oscillates with a period of ∆x0 = 1.

GROUND STATE ENERGY AND LANDAU DIAMAGNETIC SUSCEPTIBILITY

We are now in position to compute the ground state energy of the electron gas in a magnetic field, and from that
the Landau diamagnetic susceptibility. Let u be the total energy per unit volume of an electron gas with Fermi energy
εF . We have,

u =
∫ εF

0

dεg(ε)ε = (~ωc)2
∫ xF

0

dxg(x)x . (18)
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FIG. 3: Shift in Fermi energy upon turning on a magnetic field H, δx = δε/~ωc, vs Fermi energy in zero magnetic field
x0 = εF0/~ωc, where ωc = eH/mc is the cyclotron frequency. δx oscillates with period ∆x0 = 1.

Using Eqs. (8) and (9) we the get for the zero and finite magnetic field cases respectively,

u0 =
2
5
g0(εF0)
√
x0

(~ωc)2x5/2
0 =

3
5
nεF0 (19)

u =
1
3
g0(εF0)
√
x0

(~ωc)2
nmax∑
n=0

(xF + 2n+ 1)

√
xF − n−

1
2

(20)

and so,

u

u0
=

5
6

1
(x0)5/2

nmax∑
n=0

(x0 + δx+ 2n+ 1)

√
x0 + δx− n− 1

2
(21)

where εF /~ωc ≡ xF = x0 + δx.

Using our result for δx obtained from Eq. (17), we substitute into the above equation and plot (u− u0)/u0 vs x0 in
Fig. 4. We plot to relatively large values of x0 here, as compared to the earlier figures, in order to see how (u−u0)/u0

decays to zero as it must at large x0 = εF0/~ωc, since x0 → ∞ corresponds to H → 0. We see that (u − u0)/u0

displays small oscillations with period ∆x0 = 1 about an overall decay. Fitting to a quadratic decay α/x2
0, we find an

excellent fit using the numerical value α = 0.10418. This is further illustrated in Fig. 5 where we plot (u− u0)/u0 vs.
1/x2

0 and see oscillations about a perfect straight line. Our numerical results above thus give,

u = u0

[
1 +

α

x2
0

[1 + q(x0)]
]
, (22)

where q(x0) gives the oscillations about the 1/x2
0 decay. We plot q(x0) vs x0 in Fig. 6. We see that it oscillates about

zero with a period ∆x0 = 1, while the amplitude of oscillation decays as α′/
√
x0. A numerical fit to the maxima of

q(x0) gives the value α′ = 0.50216. We thus can write,

u = u0

[
1 +

α

x2
0

+
ᾱ

x
5/2
0

q̄(x0)

]
, (23)
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FIG. 4: Relative energy change (u−u0)/u0 upon turning on a finite magnetic field H vs x0 = εF0/~ωc, where εF0 is the Fermi
energy for H = 0 and ωc = eH/mc is the cyclotron frequency. The dashed line is a fit to α/x2

0 and gives the value α = 0.10418.
The inset is a blow-up detailing the oscillations with period ∆x0 = 1.
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FIG. 5: Relative energy change (u− u0)/u0 upon turning on a finite magnetic field H vs 1/x2
0 = (~ωc/εF0)2, where εF0 is the

Fermi energy for H = 0 and ωc = eH/mc is the cyclotron frequency. The straight dashed line is a fit to α/x2
0, with α = 0.10418.
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FIG. 6: Oscillations q(x0) vs x0 = εF0/~ωc, where εF0 is the Fermi energy for H = 0 and ωc = eH/mc is the cyclotron
frequency. The dashed line is a fit of the maxima to the form α′/

√
x0 and gives the value α′ = 0.50216. The inset is a blow-up

detailing the oscillations with period ∆x0 = 1.

where ᾱ ≡ αα′ = 0.052315, and q̄(x0) ≡ √x0q(x0)/α′ oscillates with constant unit amplitude and period ∆x0 = 1.
Using u0 = (3/5)nεF0, g0(εF0) = (3/2)n/εF0, x0 = εF0/~ωc, ωc = eH/mc, and µ0 ≡ e~/(2mc) the Bohr magneton,
we can rewrite the above as,

u = u0 + α
8
5
g0(εF0)µ2

0H
2 + ᾱ

8
5
g(εF0)

√
2
εF0

µ
5/2
0 H5/2q̄(εF0/2µ0H) . (24)

The magnetization density M and the magnetic susceptibility χ are defined by,

M = − ∂u

∂H
, χ =

∂M

∂H

∣∣∣∣
H=0

(25)

The term q̄ in Eqs. (23) and (24) therefore results in oscillations of the magnetization density as a function of magnetic
field with a period ∆x0 = 1, or ∆(1/H) = 2µ0/εF0 = 2e/(~ck2

F0), where the last result follows from µ0 = ~e/2mc
and εF0 = ~2k2

F0/2m, with kF0 the Fermi wavevector at H = 0. These are the well known de Haas − van Alphen
oscillations. Moreover, our T = 0 calculation finds that oscillations in M/H grow in amplitude as H increases as
∼ H1/2.

At finite temperature kBT > ~ωc, the oscillations due to q̄ will be washed out. The magnetic susceptibility is then
given by the second term on the right hand side of Eq. (24). One thus gets,

χ = −α16
5
g0(εF0)µ2

0 = −0.3334g0(εF0)µ2
0 , (26)

where we have used α = 0.10418 from our numerical fit. This should be compared to Landau’s analytic calculation
which yields χ = −(1/3)g0(εF0)µ2

0.


