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2.6.3
The magneto-resistivity tensor

We proceed by studying the electron transport according to Eq. (2.57) in weak
magnetic fields, with “weak” being specified by

ωc = e|�B|/m∗
e � 1/τ (2.58)

This condition means that the distance the electrons travel before getting scat-
tered (the mean free path �e ≡ vFτ) is small compared to the cyclotron circum-
ference 2πrc. We will see in Chapters 6 and 7 what happens when the electrons
can complete the cyclotron orbits without getting scattered. Suppose a mag-
netic field is applied in the z-direction, �B = (0, 0, B). In such a case, we obtain

jx = σEx + σvyB = σEx +
ne2τ

m∗e
vyB = σEx − jyωcτ

jy = σEy − σvxB = σEy −
ne2τ

m∗e
vxB = σEy + jxωcτ

jz = σEz

where vi are the components of the drift velocity vector. Solving this system
of equations for�j gives�j = σ�E with
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Here σ is known as the magneto-conductivity tensor. Its components can be
experimentally determined by measuring four-probe resistances using “Hall
bar” shaped samples (Fig. 2.13). Voltage probes are attached to a rectangu-
lar thin film of the material, aligned parallel to the x- and y-directions, and
perpendicular to the magnetic field direction. The transport in the z-direction
remains unaffected by �B and is of no further interest to us. We can determine
the components ρxx and ρxy of the resistivity tensor by applying a current in
the x-direction and measuring the voltage drops Vx and Vy. Since
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where S is a geometry factor (see [235]), we can establish the relation between
the components of the resistivity and the conductivity tensors:

ρxx =
σxx

σ2
xx + σ2

xy
, ρxy =

−σxy

σ2
xx + σ2

xy
(2.60)
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Fig. 2.13 Top: Top view of a Hall geometry. The magnetic field is ap-
plied perpendicular to the sheet. Bottom: The components of the con-
ductivity and the resistivity tensors are shown to the left and to the
right, respectively.

We thus find that ρxx does not depend on �B, and ρxy = −B/en = RHB. Here
ρxy is the Hall resistivity, and RH = −1/en is known as the Hall coefficient.
Hall measurements are actually a standard tool to determine carrier densi-
ties. It may be counter-intuitive at first sight that, for ρxx = 0, σxx becomes
zero as well. Furthermore, the Onsager–Casimir symmetry relation should be
mentioned, which states that the result of a measurement is exactly the same
when all current and voltage sources are exchanged, and the polarity of the
magnetic field is reversed. One consequence is that two-probe measurements,
in which the voltage drop is measured between the source and drain contacts,
must be symmetric with respect to B = 0.

Question 2.8: Write down Eqs. (2.60) for an anisotropic sample.

2.6.4
Diffusion currents

In close analogy to the treatment of drift currents, the Boltzmann model can
be applied to diffusion currents, i.e. currents as a consequence of a position-
dependent varying chemical potential µ(�r), which can have its origin in a gra-
dient of the temperature or of the carrier density. Assuming constant tem-
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perature and no external electric fields, the Boltzmann treatment results in a
diffusion current density

�jdiff =
nσ0

e
�∇µ(�r) (2.61)

The diffusion current is frequently expressed in terms of the carrier density
gradient and the diffusion constant D,

�jdiff = eD�∇n(�r) (2.62)

Question 2.9: Show that for a quasi-free electron gas, the relation between D and
the mobility µ equals

D =
2EF

3e
µ in d = 3

D =
EF

e
µ in d = 2

D =
2EF

e
µ in d = 1 (2.63)

Such relations are known as Einstein relations.4

2.7
Scattering mechanisms

As mentioned in Section 2.6, many scattering mechanisms contribute to the
average momentum relaxation time τ. Each process has its characteristic ma-
trix element W�k,�k� , Eq. (2.49). The relevance of a particular kind of scattering
varies greatly and depends on the carrier density as well as on the temper-
ature. How in detail the matrix elements are calculated is treated in several
excellent books, e.g. [254, 270]. Each scattering mechanism can be character-
ized by its contribution to the carrier mobility µi, which sum up to the total
mobility according to the Matthiesen rule, 1/µ = ∑i 1/µi. In pure crystals,
the sole source of scattering is lattice vibrations. Electron–phonon scattering
has several facets. In crystals with valley degeneracy, electrons may be scat-
tered between valleys, which requires absorption or emission of a phonon.
In polar and/or piezoelectric crystals, on the other hand, lattice vibrations go
along with strong oscillating electric fields. In real crystals, charged impuri-
ties may dominate the scattering rates. We briefly present the most important
scattering mechanisms below.

4) The Einstein relation for particles obeying the Boltzmann statistics is
Eq. (5.10).
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An impurity breaks the symmetry of the lattice and causes scattering. If the
impurity is neutral, the scattering rates are usually negligible. Charged impu-
rities, however, represent screened Coulomb scatterers, with peak potentials
that can become comparable to the Fermi energy.5 Clearly, an electron with a
larger kinetic energy will get deflected by a smaller angle as it gets scattered,
and we can expect that the mobility increases as the temperature, and with
it the average electron kinetic energy, increases. In fact, an evaluation of the
corresponding matrix element shows that, for weak Coulomb potentials and
within the Born approximation, the resulting mobility is ∝ Θ3/2, multiplied
by a logarithmic correction, i.e. a factor that depends logarithmically on Θ.

Electron–phonon scattering can be divided into deformation potential scat-
tering and scattering of electrons by the corresponding electric fields. By de-
formation potential scattering, we mean scattering at the lattice deformations
caused by the phonons. Here, scattering at acoustic phonons is the most im-
portant mechanism. Since the energy transfers are small in electron–acoustic
phonon scattering, it can be treated as quasi-elastic. A simple argument gives
the correct temperature dependence. The density of acoustic phonons nac is
proportional to the Bose–Einstein distribution, which, for large temperatures
compared to the phonon energy, varies as 1/Θ. Since the mobility is propor-
tional to nac/v̄ (v̄ is the average electron velocity, which is ∝

√
Θ), we expect

that the mobility due to electron–acoustic phonon scattering is ∝ Θ−3/2. This
is in fact observed experimentally.

Furthermore, both optical and acoustic phonons can assist the electron in
scattering between the valleys in a crystal with valley degeneracy, such as Si.
The corresponding momentum transfers are quite large, since the separation
of the valley in reciprocal space is of the order of the size of the Brillouin zone.

This completes the list of the scattering mechanisms relevant in Si. In this
material, ionized impurities dominate the mobility at low temperatures, while
quasi-elastic acoustic phonon scattering is the most important mechanism at
intermediate temperatures. For Θ > 200 K, inter-valley scattering becomes
significant as well. Consequently, the mobility in Si shows a maximum as a
function of temperature. Its position depends on both the impurity density
and the carrier density. Electron mobilities up to 1 m2/V s have been achieved
in Si.

GaAs is a polar material, and consequently lattice vibrations are always ac-
companied by oscillating electric fields. They are particularly strong for op-
tical phonons. The resulting scattering mechanism is called polar scattering.
Optical phonons vanish for temperatures below≈ 60 K, and consequently po-
lar scattering is relevant only above this temperature. In the limit kBΘ � h̄ωop
(ωop denotes the optical phonon frequency, which for GaAs is of the order of
5 meV; see Fig. 2.14), it can be shown that the resulting mobility varies as

5) The screened Coulomb potential is studied in Exercise E2.5.
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Fig. 2.14 Phonon dispersions for S i (top) and GaAs (bottom). After
[118].

Θ−1/2. If the crystal is piezoelectric like GaAs, a crystal deformation gener-
ates a polarization field as well, which is another source of scattering, called
piezoelectric scattering. As for the polar scattering, the mobility due to piezo-
electric scattering is ∝ Θ−1/2, although this temperature dependence holds for
a larger range of temperatures.

Fig. 2.15 summarizes the contributions of different scattering mechanisms
to the electron total mobility of GaAs. A comparison with measurements re-
veals that, at low temperatures, ionized impurity scattering dominates, while,
at higher temperatures, the mobility is entirely determined by polar scattering.
In a small temperature range around the emerging maximum of the mobil-
ity, piezoelectric scattering is significant. Furthermore, it is seen that acoustic
phonon scattering plays no role, in contrast to the scattering in Si.

2.8
Screening

The conduction electrons react to perturbations. They collect in the poten-
tial valleys and avoid the peaks. As a consequence, the external potential is
reduced to an effective potential in the crystal; the electrons “screen” the per-
turbation. The goal of this section is to present a qualitative picture of how


