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The Bloch theory (Chapter 8) extends the equilibrium free electron theory of Sommer-
feld (Chapter 2) to the case in which a (nonconstant) periodic potential is present. [n

Table 12.1 we compare the major features of the two theories.

Table 12.1
COMPARISON OF SOMMERFELD AND BLOCH ONE-ELECTRON EQUILIBRIUM
LEVELS
SOMMERFELD BLOCH
QUANTUM NUMBERS k (fik is the Kk, r (fik is the crystal momentum

{(EXCLUDING SPIN)

momentum.)

and # is the band index.)

RANGE OF QUANTUM
NUMBERS

k runs through all of k-
space consistent with the
Born-von Karman
periodic boundary
condition.

For each n, k runs through all wave
vectors in a single primitive cell of the
reciprocal lattice consistent with the
Born-von Karman periodic boundary
condition; » runs through an infinite
set of discrete values.

ENERGY

&) = h2k?
) = 2m

For a given band index n, & (k) has no
simple explicit form. The only general
property is periodicity in the reciprocal
lattice:

&,k + K) = £,(k).

VELOCITY

The mean velocity of an
electron in a level with
wave vector k is:
hk 18
vi==—

Hi . Ea‘

The mean velocity of an electron in a
level with band index n and wave
vector K is:

1 ¢8,(k)

(k) = )
W0 =2

WAVE FUNCTION

The wave function of an
electron with wave vector
kis:

ik-r

Yi(r) = %

The wave function of an electron with
band index n and wave vector k is:
Yulr) = e.‘-runl(r)
where the function u,, has no simple
explicit form. The only general property
is periodicity in the direct lattice:
u, (r + R) = u,(r).

To discuss conduction we had to extend Sommerfeld’s equilibrium theory to

nonequilibrium cases. We argued in Chapter 2 that one could calculate the dynamic

behavior of the free electron gas using ordinary classical mechanics, provided that

there was no need to localize an electron on a scale comparable to the interelectronic

distance. Thus the trajectory of each electron between collisions was calculated

according to the usual classical equations of motion for a particle of momentum #k:
hk

r >
m

hk = —e(E + %v x H). 2.1
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If pressed to justify this procedure from a quantum-mechanical point of view we
would argue that (12.1) actually describes the behavior of a wave packet of free

electron levels,
hk'?t
1) = k’ > 5 . - R
Wl ) = Y oK) exp [a (k o )]

gk) = 0, |k —k| > Ak, (12.2)

where k and r are the mean position and momentum about which the wave packet
is localized (to within the limitation Ax Ak > 1 imposed by the uncertainty principle).

This approach has a simple and elegant generalization to electrons in a general
periodic potential, which is known as the semiclassical model. Justifying the semi-
classical model in detail is a formidable task, considerably more difficult than jus-
tifying the ordinary classical limit for free electrons. In this book we shall not offer
a systematic derivation. Qur emphasis instead will be on how the semiclassical model
is used. We shall therefore simply describe the model, state the limitations on its
validity, and extract some of its major physical consequences.

The reader who is dissatisfied with the very incomplete and merely suggestive
bases we shall offer for the semiclassical model is urged to examine the broad array
of mysteries and anomalies of free electron theory that the model resolves. Perhaps
a suitable attitude to take is this: If there were no underlying microscopic quantum
theory of electrons in solids, one could still imagine a semiclassical mechanics (guessed
by some late nineteenth-century Newton of crystalline spaces} that was brilliantly
confirmed by its account of observed electronic behavior, just as classical mechanics
was confirmed by its accounting for planetary motion, and only very much later given
a more fundamental derivation as a limiting form of quantum mechanics.

As with free electrons, two questions arise in discussing conduction by Bloch
electrons?: (a) What is the nature of the collisions? (b} How do Bloch electrons move
between collisions? The semiclassical model deals entirely with the second question,
but the Bloch theory also critically affects the first. Drude assumed that the electrons
collided with the fixed heavy ions. This assumption cannot be reconciled with the
very long mean free paths possible in metals, and fails to account for their observed
temperature dependence.® The Bloch theory excludes it on theoretical grounds as
well. Bloch levels are stationary solutions to the Schrédinger equation in the presence
of the full periodic potential of the ions. If an electron in the level ¥, has a mean
nonvanishing velocity (as it does unless 0g,(k)/ck happens to vanish), then that
velocity persists forever.* One cannot appeal to collisions with static ions as a mecha-
nism to degrade the velocity, because the interaction of the electron with the fixed
periodic array of ions has been fully taken into account ab initio in the Schrodinger
equation solved by the Bloch wave function. Thus the conductivity of a perfect
periodic crystal is infinite.

1 For one of the more recent efforts at a systematic derivation see J. Zak, Phys. Rev. 168, 686 (1968).
References to much of the earlier work are given therein. A very appealing treatment of Bloch electrons
in a magnetic field (perhaps the most difficult area in which to derive the semiclassical model) is given
by R. G. Chambers, Proc. Phys. Soc. 89, 695 (1966), who explicitly constructs a time-dependent wave
packet whose center moves along the orbit determined by the semiclassical equations of motion.

2 We shall use the term “Bloch electrons” to mean “electrons in a general periodic potential.”

3 Page9.

4 Seepage 141.
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This result, so disconcerting to one’s classical inclination to picture the electrons
as suffering current degrading bumps with individual jons, can be understood as a
simple manifestation of the wave nature of electrons. In a periodic array of scatterers
a wave can propagate without attenuation because of the coherent constructive
interference of the scattered waves.®

Metals have an electrical resistance because no real solid is a perfect crystal. There
are always impurities, missing ions, or other imperfections that can scatter electrons,
and at very low temperatures it is these that limit conduction. Even if imperfections
could be entirely eliminated, however, the conductivity would remain finite because
of thermal vibrations of the ions, which produce temperature-dependent distortions
from perfect periodicity in the potential the electrons experience. These deviations
from periodicity are capable of scattering electrons, and are the source of the tem-
perature dependence of the electronic relaxation time that was noted in Chapter 1.

We defer a full discussion of the actual scattering mechanisms to Chapters 16 and
26. Here we only note that the Bloch theory now forces us to abandon Drude’s naive
picture of electron-ion scattering. We shall nevertheless continue to extract conse-
quences that follow from the simple assumption that some scattering mechanism
exists, irrespective of its detailed features.

Thus the main problem we face is how to describe the motion of Bloch electrons
between collisions. The fact that the mean velocity of an electron in a definite Bloch
level y,, is®
vk = L 250

h ¢k

(12.3)

is very suggestive. Consider a wave packet of Bloch levels from a given band, con-
structed in analogy to the free electron wave packet (12.2):

Pr, 1) =Y gk W, (r) exp [— fi Sn(k')t], gk) = 0, |[K —k| > Ak
K ! (12.4)

Let the spread in wave vector Ak be small compared with the dimensions of the
Brillouin zone, so that &,(k) varies little over all levels appearing in the wave packet.
The formula for the velocity (12.3) can then be viewed as the familiar assertion that
the group velocity of a wave packet is dw/ck = (¢/cK)(&/h).

The semiclassical model describes such wave packets when it 1s unnecessary to
specify the position of an electron on a scale comparable with the spread of the
packet.

Let us estimate how broad the wave packet (12.4) must be when the spread in
wave vector is small compared with the dimensions of the Brillouin zone. We examine
the wave packet at points separated by a Bravais lattice vector. Settingr = ro + R,
and using the basic property (8.6) of the Bloch function, we can write (12.4) as

Viro + R1) = ;[g(k')ll/,,; (ro)] exp [i (k' ‘R~ %Sn(k')l)]- (12.5)

5 For a unified view of a variety of such phenomena, see L. Brillouin, Wave Propagation in Periodic
Structures, Dover, New York, 1953,
©  See page 141. The result is proved in Appendix E.
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Viewed as a function of R for fixed ry, this is just a superposition of plane waves, of
the form (12.2), with a weight function g(k) = [ g(k),.(ro)]. Thus if Ak measures the
region within which g (and hence g) is appreciable,” then y,(r, + R). in accordance
with the usual rules for wave packets, should be appreciable within a region of
dimensions AR = 1/Ak. Since Ak is small compared with the zone dimensions, which
are of the order of the inverse lattice constant 1/a, it follows that AR must be large
compared with a. This conclusion is independent of the particular value of r,, and
we therefore conclude that a ware packet of Bloch levels with a wave vector that is
well defined on the scale of the Brillouin zone must be spread in real space over many
primitive cells.

The semiclassical model describes the response of the electrons to externally
applied electric and magnetic fields that vary slowly over the dimensions of such a
wave packet (Figure 12.1) and therefore exceedingly slowly over a few primitive cells.

Figure 12.1
Schematic view of the situation
described by the semiclassical
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In the semiclassical model such fields give rise to ordinary classical forces in an
equation of motion describing the evolution of the position and wave vector of the
packet. The subtlety of the semiclassical model that makes it more complicated than
the ordinary classical limit of free electrons, is that the periodic potential of the
lattice varies over dimensions that are small compared with the spread of the wave
packet, and therefore cannot be treated classically. Thus the semiclassical model is
a partial classical limit: The externally applied fields are treated classically, but the
periodic field of the ions is not.

DESCRIPTION OF THE SEMICLASSICAL MODEL

The semiclassical model predicts how, in the absence of collisions, the position r
and wave vector k of each electron® evolve in the presence of externally applied
electric and magnetic fields. This prediction is based entirely upon a knowledge of the
band structure of the metal, i.e., upon the forms of the functions &,(Kk), and upon no
other explicit information about the periodic potential of the ions. The model takes the
&,(K) as given functions, and says nothing about how to compute them. The aim of
the model is to relate the band structure to the transport properties, i.e., the response

7 H g is appreciable only in a neighborhood of k small compared with the dimensions of the zone,
then ¢,,(r,) will vary little over this range, and as a function of k. g will differ little from a constant times
g.

8 Hereafter we shall speak of an electron as having both a position and a wave vector. What we are
referring to, of course, is a wave packet, as described above.
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of the electrons to applied fields or temperature gradients. One uses the model both
to deduce transport properties from a given (calculated) band structure and to deduce
features of the band structure from the observed transport properties.

Given the functions &,(k), the semiclassical model associates with each electron
a position r. a wave vector k, and a band index n. In the course of time and in the
presence of external electric and magnetic fields E(r, 1) and Hqr, t) the position, wave
vector, and band index are taken to evolve according to the following rules:

1. The band index n is a constant of the motion. The semiclassical model ignores
the possibility of “interband transitions”.

2. The time evolution of the position and wave vector of an electron with band
index » are determined by the equations of motion:

. _ 12§ (K)
P = v, k) = R (12.6a)
k= —e [E(r, 0+ % v,(k) x H(r, t)]. (12.6b)

3. (This rule simply restates those features of the full quantum mechanical Bloch
theory that are retained in the semiclassical model.) The wave vector of an electron
is only defined to within an additive reciprocal lattice vector K. One cannot
have two distinct electrons with the same band index n and position r, whose
wave vectors k and k’ differ by a reciprocal lattice vector K; the labels n, r, k
and 1,k + K are completely equivalent ways of describing the same electron.’
All distinct wave vectors for a single band therefore lie in a single primitive cell
of the reciprocal lattice. [n thermal equilibrium the contribution to the electronic
density from those electrons in the nth band with wave vectors in the infinitesimal
volume element dk of k-space is given by the usual Fermi distribution (2.56):1°

dk dk/4m3
S&k) ;5 = eT“H{"‘TH (12.7)

COMMENTS AND RESTRICTIONS
A Many-Carrier Theory

Because the applied fields are assumed to cause no interband transitions, one can
consider each band to contain a fixed number of electrons of a particular type. The
properties of these types may differ considerably from band to band, since the kind
of motion electrons with band index n can undergo depends on the particular form
of &,(k). In (or near) equilibrium, bands with all energies many kT above the Fermi
energy & will be unoccupied. Thus one need not consider infinitely many carrier

®  The semiclassical equations of motion (12.6) preserve this equivalence as time evolves. If r(¢), k(1)
give a solution for the nth band, then so will r(z), k(t) + K for any reciprocal lattice vector K, as a
consequence of the periodicity of &,(k).

10 This assumes that interactions of the electron spin with any magnetic fields are of no consequence;
if they are, then each spin population makes a contribution to n given by half (12.7) where &,{k) must
include the interaction energy of the given spin with the magnetic field.
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types, but only those in bands with energies within a few kgT of, or lower than, &.
Furthermore, we shall see below that bands in which all energies are many kgT less
than &p—i.e., bands that are completely filled in equilibrium-—can also be ignored!
As a result, only a small number of bands (or carrier types) need be considered in
the description of a real metal or semiconductor.

Crystal Momentum Is Not Momentum

Note that within each band the equations of motion (12.6) are the same as the free
electron equations (12.1) except that &,(k) appears instead of the free electron energy
h2k?/2m. Nevertheless, the crystal momentum hk is not the momentum of a Bloch
electron, as emphasized in Chapter 8. The rate of change of an electron’s momentum
is given by the total force on the electron, but the rate of change of an electron’s
crystal momentum is given by Eq. (12.6), in which forces are exerted only by the
external fields and not by the periodic field of the lattice."*

Limits of Validity

In the limit of zero periodic potential the semiclassical model must break down,
for in that limit the electron will be a free electron. In a uniform electric field a free
electron can continually increase its kinetic energy at the expense of electrostatic
potential energy. However, the semiclassical model forbids interband transitions,
and therefore requires that the energy of any electron remains confined within the
limits of the band in which the electron originélly found itself.!? Thus there must
be some minimum strength to a periodic potential before the semiclassical model
can be applied. Such restrictions are not easy to derive, but have a very simple form,
which we state here without prool.!? At a given point in k-space the semiclassical
equations will be valid for electrons in the nth band provided that the amplitudes
of the slowly varying external electric and magnetic fields satisfy

2
eEa < Lgs_g(ﬂ (12.8)
'F
2
ho, « &5’;(—1()]— (12.9)
F

In these inequalities the length a is of the order of a lattice constant, Eeaplk) 18 the
difference between &,(k) and the nearest encrgy &,k) at the same point in k-space
but in a different band, and c, is the angular cyclotron frequency (Eq. (1.18)).
Condition (12.8) is never close to being violated in a metal. Even with a current
density as large as 102 amp/cm? and a resistivity as large as 100 pohm-cm, the field

11 Although the periodic lattice potential does play a crucial role in the semiclassical equations
(through the structure of the function &.(k) determined by that potential), the role cannot be that of a
position-dependent force. To probe a force with the periodicity of the lattice one would have to localize
an electron within a single primitive cell. Such a localization is inconsistent with the structure of the wave
packets underlying the semiclassical model (see Figure 12.1), which are spread over many lattice sites.

12 This requirement is violated every time the free electron wave vector Crosses a Bragg plane, since
the electron then jumps from the lower free electron band to the higher one.

13 A rough justification is given in Appendix J.
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in the metal will only be E = pj = 1072 volt/cm. Hence for a on the order of 1078
cm, eEa is of order 1071° eV. Since & is of the order of an electron volt or more,
&.(k) must be as small as 1073 eV before condition (12.8) is violated. In practice,
gaps this small are never encountered except near points where two bands become
degenerate, and then only in an exceedingly small region of k-space about such
points. Typical small band gaps are of the order of 107! eV, and therefore (12.8)
is satisfied with a factor of 1078 to spare. The condition is of practical concern only
in insulators and in homogeneous semiconductors, where it is possible to establish
immense electric fields; when the condition is violated electrons can make an inter-
band transition driven by the field, a phenomenon known as electric breakdown.

The condition (12.9) on the magnetic field strength is not as difficult to violate.
The energy ke, is of order 10™* eV in a field of 10* gauss, in which case (12.9) fails
for gaps as large as 1072 eV. Although this is still a small energy gap, such gaps
are not at all uncommon, especially when the gap is entirely due to a degeneracy
split by spin-orbit coupling. When condition (12.9) fails to hold, electrons may not
follow the orbits determined by the semiclassical equations of motion (12.6), a phe-
nomenon known as magnetic breakthrough (or “breakdown”). The possibility of
magnetic breakthrough must always be kept in mind in interpreting electronic
properties in very strong magnetic fields.

In addition to the conditions (12.8) and (12.9) on the amplitude of the applied
fields, one must add a low-frequency condition on the fields,

ho « &y,

(12.10)

or else a single photon could supply enough energy to produce an interband transi-
tion. There is also the condition on the wavelength of the applied fields,

A »a, (12.11)
that is necessary if wave packets can be meaningfully introduced at all.}*

Basis for the Equations of Motion

As discussed above, Eq. (12.6a) is simply the statement that the velocity of a semi-
classical electron is the group velocity of the underlying wave packet. Equation
(12.6b) is considerably more difficult to justify. It is highly plausible in the presence
of a static electric field as the simplest way to guarantee conservation of energy, for
if the field is given by E = — V¢, then we should expect each wave packet to move
so that the energy

&,(k(1)) — ed(x(1)) (12.12)
remains constant. The time derivative of this energy is

Fok - Vo i 12.13

oK SN 1213

1+ [t is also sometimes necessary lo take into account further quantum effects due to the possibility
of closed electronic k-space orbits in a magnetic field. This can be handled by an ingenious extension of
the semiclassical model, and is therefore not a limitation in the sense of the restrictions described above.
The problem arises in the theory of the de Haas-van Alphen effect and related phenomena, and is described
in Chapter 14.
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which Eq. (12.6a) permits us to write as

v, (k) - [hk — eVg]. (12.14)
This will vanish if ]
hk = eV = —¢E, (12.15)

which is Eq. (12.6b) in the absence of a magnetic field. However, (12.15) is not necessary
for energy to be conserved, since (12.14) vanishes if any term perpendicular to v,(k)
is added to (12.15). To justify with rigor that the only additional term should be
[va(k)/c] x H, and that the resulting equation should hold for time-dependent fields
as well, is a most difficult matter, which we shall not pursue further. The dissatisfied
reader is referred to Appendix H for a further way of rendering the semiclassical
equations more plausible. There it is shown that they can be written in a very compact
Hamiltonian form. To find a really compelling set of arguments, however, it is
necessary to delve rather deeply into the (still growing) literature on the subject.!’

CONSEQUENCES OF THE SEMICLASSICAL EQUATIONS OF
MOTION

The rest of this chapter surveys some of the fundamental direct consequences of the
semiclassical equations of motion. In Chapter 13 we shall turn to a more systematic
way of extracting theories of conduction.

In most of the discussions that follow we shall consider a single band at a time,
and shall therefore drop reference to the band index except when explicitly comparing
_ the properties of two or more bands. For simplicity we shall also take the electronic
equilibrium distribution function to be that appropriate to zero temperature. In
metals finite temperature effects will have negligible influence on the properties dis-
cussed below. Thermoelectric effects in metals will be discussed in Chapter 13, and
semiconductors will be treated in Chapter 28.

The spirit of the analysis that follows is quite similar to that in which we discussed
transport properties in Chapters 1 and 2: We shall describe collisions in terms of a
simple relaxation-time approximation, and focus most of our attention on the motion
of electrons between collisions as determined (in contrast to Chapters 1 and 2) by
the semiclassical equations of motion (12.6).

Filled Bands Are Inert

A filled band is one in which all the energies lie below!® &. Electrons in a filled band
with wave vectors in a region of k-space of volume dk contribute dk/4n* to the total
electronic density (Eq. (12.7)). Thus the number of such electrons in a region of
position space of volume dr will be dr dk/4n3. One can therefore characterize a filled
band semiclassically by the fact that the density of electrons in a six-dimensional
rk-space (called phase space, in analogy to the rp-space of ordinary classical me-
chanics) is 1/4r3.

15 See, for example, the references given in footnote 1.
16 More generally, the energies should be so far below the chemical potential y compared with kg T
that the Fermi function is indistinguishable from unity throughout the band.
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The semiclassical equations (12.6) imply that a filled band remains a filled band
at all times, even in the presence of space- and time-dependent electric and magnetic
fields. This is a direct consequence of the semiclassical analogue of Liouville’s theorem,
which asserts the foliowing:'’

Given any region of six-dimensional phase space Q,, consider the point r’, k' into
which each point r, k in Q, is taken by the semiclassical equations of motion between
times'® ¢ and ¢'. The set of all such points r’, k' constitutes a new region Q,., whose
volume is the same as the volume of Q, (see Figure 12.2); i.c., phase space volumes
are conserved by the semiclassical equations of motion.

Figure 12.2

Semiclassical trajectories in rk-space. The region ,. contains
at time ¢’ just those points that the semiclassical motion has
carried from the region O, at time . Liouville’s theorem asserts
that Q, and €, have the same volume. (The illustration is for
a two-dimcnsional rk-space lying in the plane of the page, i.e.,
for semiclassical motion in one dimension.)

This immediately implies that if the phase space density is 1/47> at time zero, it
must remain so at all times, for consider any region Q at time t. The electrons in Q
attime ¢ are just those that were in some other region Q, at time zero where, according
to Liouville’s theorem, O, has the same volume as Q. Since the two regions also have
the same number of electrons, they have the same phase space density of electrons.
Because that density was 1/4r*, independent of the region at time 0, it must also be

7 See Appendix H for a proof that the theorem applies to semiclassical motion. From a quantum

mechanical point of view the inertness of filled bands is a simple consequence of the Pauli exclusion
principle: The “phase space density” cannot increase if every level contains the maximum number of
electrons allowed by the Pauli principle; furthermore, if interband transitions are prohibited, neither can
it decrease, for the number of electrons in a level can only be reduced if there are some incompletely filled
levels in the band for those electrons to move into. For logical consistency, however, it is necessary to
demonstrate that this conclusion also follows directly from the semiclassical equations of motion, without
reinvoking the underlying quantum mechanical theory that the model is meant to replace.

'8 The time ¢ need not be greater than r; ie., the regions from which Q, evolved have the same volume
as €, as well as the regions into which Q, will evolve.
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1/4n3, independent of the region at time ¢. Thus semiclassical motion between
collisions cannot alter the configuration of a filled band, even in the presence of
space- and time-dependent external fields.'®

However, a band with a constant phase space density 1,4n* cannot contribute to
an electric or thermal current. To see this, note that an infinitesimal phase space
volume element dk about the point k will contribute dk/4n* electrons per unit
volume, all with velocity v(k) = (1/h) ¢&(k)/ck to the current. Summing this over all
k in the Brillouin zone, we find that the total contribution to the electric and energy
current densities from a filled band is

j=(—e)Jdk 18

4rdh ek’
Ak 1ée 1 [dk12
= | el LR Oy .
k= 123897 5% = 2 | 2 o €W (12.16)

But both of these vanish as a consequence of the theorem?® that the integral over
any primitive cell of the gradient of a periodic function must vanish.

Thus only partially filled bands need be considered in calculating the electronic
properties of a solid. This explains how that mysterious parameter of free electron
theory, the number of conduction electrons, is to be arrived at: Conduction is due
only to those electrons that are found in partially filled bands. The reason Drude’s
assignment to each atom of a number of conduction electrons equal to its valence is
often successful is that in many cases those bands derived from the atomic valence
electrons are the only ones that are partially filled.

Evidently a solid in which all bands are completely filled or empty will be an
electrical and (at least as far as electronic transport of heat is concerned) thermal
insulator. Since the number of levels in each band is just twice the number of primitive
cells in the crystal, all bands can be filled or empty only in solids with an even number
of electrons per primitive cell. Note that the converse is not true: Solids with an even
number of electrons per primitive cell may be (and frequently are) conductors, since
the overlap of band energies can lead to a ground state in which several bands are
partially filled (see, for example, Figure 12.3). We have thus derived a necessary, but
by no means sufficient, condition for a substance to be an insulator.

It is a reassuring exercise to go through the-periodic table looking up the crystal
structure of all insulating solid elements. They will all be found to have either even
valence or (e.g., the halogens) a crystal structure that can be characterized as a lattice
with a basis containing an even number of atoms, thereby confirming this very
general rule.

19 Collisions cannot alter this stability of filled bands either, provided that we retain our basic
assumption (Chapter 1, page 6 and Chapter 13, page 245) that whatever else they do, the collisions cannot
alter the distribution of electrons when it has its thermal equilibrium form. For a distribution function
with the constant value 1/4n° is precisely the zero temperature equilibrinm form for any band all of whose
energies lie below the Fermi energy.

20 The theorem is proved in Appendix 1. The periodic functions in this case are &(k) in the case of j,
and g(k)? in the case of jg
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Figure 12.3

A two-dimensional illustration of why a divalent solid
can be a conductor. A free electron circle, whose area
equals that of the first Brillouin zone (I) of a square
\ Bravais lattice, extends into the second zone (11), thus
producing two partially filled bands. Under the in-
fluence of a sufficiently strong periodic potential the
pockets of first-zone holes and second-zone electrons
might shrink to zero. Quite generally, however, a weak
\ / periodic potential will always lead to this kind of

overlap (except in one dimension).

n

11 1 nn

Semiclassical Motion in an Applied DC Electric Field

In a uniform static electric field the semiclassical equation of motion for k (Eq. (12.6))
has the general solution

k(t) = k() — %—t. (12.17)

Thus in a time ¢ every electron changes its wave vector by the same amount. This is
consistent with our observation that applied fields can have no effect on a filled band
in the semiclassical model, for a uniform shift in the wave vector of every occupied
level does not alter the phase space density of electrons when that density is constant,
as it is for a filled band. However, it is somewhat jarring to one’s classical intuition
that by shifting the wave vector of every electron by the same amount we nevertheless
fail to bring about a current-carrying configuration.

To understand this, one must remember that the current carried by an electron is
proportional to its velocity, which is not proportional to k in the semiclassical model.
The velocity of an electron at time ¢t will be

h

Since v(k) is periodic in the reciprocal lattice, the velocity (12.18) is a bounded function
of time and, when the field E is parallel to a reciprocal lattice vector, oscillatory!
This is in striking contrast to the free electron case, where v is proportional to k and
grows linearly in time.

The k dependence (and, to within a scale factor, the t dependence) of the velocity
is illustrated in Figure 12.4, where both &(k) and t(k) are plotted in one dimension.
Although the velocity is linear in k near the band minimum, it reaches a maximum
as the zone boundary is approached, and then drops back down, going to zero at the
zone edge. In the region between the maximum of v and the zone edge the velocity
actually decreases with increasing k, so that the acceleration of the electron is opposite
to the externally applied electric force!

This extraordinary behavior is a consequence of the additional force exerted by
the periodic potential, which, though no longer explicit in the semiclassical model,
lies buried in it (through the functional form of &(k)). As an electron approaches a

vik(t)) = v (k(O) = e—m) (12.18)



