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The number of electrons 
N that flip their magnetic moment from −μB to μB are
those contained in the energy interval μB B around the Fermi level:


N = 1

2
D(EF )μB B,

where D(EF )/2 = D0(EF ) is the density-of-states at the Fermi level for one spin
direction. The magnetic moment M per unit volume is then

M = 1

V

N2μB = μ2

B B
D(EF )

V
;

the ratio M/B gives for the Pauli spin susceptibility the value

χ
P

= μ2
B

D(EF )

V
. (15.31)

In the case of the free-electron gas, the net effect of the Pauli paramagnetic sus-
ceptibility (15.31) and the Landau diamagnetic susceptibility (15.28) is a paramag-
netic behavior; in fact χ

L
= −(1/3)χP . In actual materials, the “effective mass” for

orbital motion, as well as the “effective gyromagnetic factor,” can be rather different
from the corresponding free-electron values, so changing the relative importance of the
Pauli and Landau susceptibility; this explains why some metals may have a net dia-
magnetic behavior. For a more quantitative account, correlation, and exchange effects
among electrons should be considered, because they may significantly influence the
magnetic susceptibility.

15.5 Magnetoresistivity and Classical Hall Effect

General Considerations and Phenomenological Aspects

Transport effects in crystals in the presence of electric fields and temperature gradients
have been considered in Chapter 11. In this section, we study some aspects of trans-
port phenomena due to the simultaneous presence of electric and magnetic fields; the
possible presence of thermal gradients adds further variety to the phenomenology, but
here we confine our attention to samples at uniform temperature.

The study of magnetic field effects on the transport properties of metals and semi-
conductors has become a well-established and invaluable tool for the investigation of
mobile carriers in crystals. In particular the Hall measurements, aimed at the determina-
tion of carrier concentration and charge sign, are routinely used for the characterization
of materials. Also magnetoresistivity measurements, which determine the resistivity
of materials in the presence of magnetic fields, offer a wide range of effects. In metals
with closed Fermi surfaces (such as alkali metals), the magnetoresistivity does satu-
rate for any crystal orientation (i.e. it approaches a constant value for sufficiently high
magnetic fields, irrespective of orientation); the same occurs for n-type and p-type
semiconductors. In metals with equal number of electrons and holes (such as Bi, Sb,
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and so on), the magnetoresistivity does not saturate for any crystal orientation and keeps
on increasing as the magnetic field increases; the same occurs for semiconductors with
equal numbers of electrons and holes. We also mention that in metals with open Fermi
surfaces (such as Cu, Ag, Au, and so on), the magnetoresistivity saturates for most of
the crystal orientations but does not saturate for others. Finally, and most importantly,
for two-dimensional systems the magnetoresistance is quantized and the quantum Hall
effect occurs. In this section we consider some aspects of the traditional magnetoresis-
tivity and Hall phenomenology in three-dimensional crystals, while in the next section
we consider the quantized Hall effect in two-dimensional systems.

In isotropic media the application of a (small) electric field drives a current density
parallel and proportional to it, and the linear relationship holds

J = σE, (15.32a)

where the conductivity σ is a scalar quantity. In the presence of a magnetic field, carriers
are deflected and in general the current density is no more parallel to the electric field;
the conductivity becomes a tensor even for an isotropic material. Relation (15.32a) has
to be replaced by the more general expression

Ji =
�

j

σi j (B)E j , (15.32b)

where σi j (B) (i, j = x, y, z) are the components of the magnetoconductivity tensor
σ (B). Similar considerations can be done for the resistivity of an isotropic medium
in the presence of a magnetic field; the relationship between electric field and current
density becomes

Ei =
�

j

ρi j (B)Jj , (15.32c)

where ρi j (B) (i, j = x, y, z) are the components of the magnetoresistivity tensor ρ(B).
The magnetoconductivity tensor and magnetoresistivity tensor are the inverse of each
other, and it holds

ρi j (B) =
�

1

σ (B)

�

i j
. (15.32d)

The transport parameters ρi j (B) are often determined experimentally using the
standard geometry in which a magnetic field B is applied orthogonally to a long and
thin current carrying conductor and the current flows, for instance, along the x-direction
(see Figure 15.9); the x- and y-directions are often referred to as “longitudinal” and
“transverse” directions, respectively.

In the standard geometry, in which transport is in the xy plane and furthermore
Jy ≡ 0 (in stationary conditions), the density current J, and the electric field E are
related by

�
Ex

Ey

�
=

�
ρxx (B) ρxy(B)

ρyx (B) ρyy(B)

� �
Jx

Jy ≡ 0

�
.
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Figure 15.9 Standard geometry for Hall effect and magnetoresistivity measurements. VHall is
the Hall potential, Jx is the current density in the flow direction, and w denotes the width of the
strip.

The above matrix equation can be written explicitly in the form

Ex = ρxx (B)Jx , (15.33a)

Ey = ρyx (B)Jx . (15.33b)

Thus the diagonal element ρxx(B) of the magnetoresistivity tensor is measured by
the ratio between the longitudinal electric field Ex and the current density Jx in the
x-direction. The off-diagonal component ρyx (B) is measured by the ratio between
the transverse electric field Ey and the current density Jx . It can also be inferred by
inspection that ρxy(B) = −ρyx (B) (as shown also in the models discussed below).

The transverse electric field Ey , also called Hall field, is produced by the space
charges accumulated (in stationary conditions) at the borders of the conductor because
of the deflection due to the magnetic field. One or the other of the off-diagonal magne-
toresistivity components (i.e. ρyx or its opposite ρxy) are also known as Hall resistivity.
Most often it is convenient to report the Hall coefficient, defined as

RHall(B) = 1

B
ρyx (B) = 1

B

Ey

Jx
. (15.34a)

Notice that the Hall potential is VHall = Eyw, where w is the transverse dimension of
the sample; in the absence of magnetic field, both VHall and ρyx vanish. The current in
the Hall bar is related to the current density Jx , and to the thickness d and width w of
the strip by the relation I = Jxwd . We have thus

ρyx (B) = Ey

Jx
= VHall d

I
=⇒ VHall = ρyx(B)

I

d
; (15.34b)

thus at parity of other conditions the Hall potential is higher for bars of small thickness.
The opportunity to use conductors of small thickness, was at the basis of the discovery
by Hall of the effect that brings his name, after failing in observing the effect in massive
metal samples. “Owing probably to the fact that the metal disk used had considerable
thickness, the experiment at that time failed to give any positive result. Prof. Rowland
now advised me, in repeating this experiment, to use gold leaf mounted on a plate of
glass as my metal strip. I did so, and, experimenting as indicated above, succeeded
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on the 28th of October in obtaining, as the effect of the magnet’s action, a decided
deflection of the galvanometer needle …” [Excerpt from the article by E. H. Hall,
Amer. J. Math. 2, 287 (1879)].

We pass now to study the Hall effect and the magnetoresistivity in a few simple mod-
els. We consider first the case of a single type of carriers in a parabolic band model, with
a unique relaxation time. Next, we consider the case in which holes and electrons are
present, both with isotropic masses. The models described below, provide an indicative
picture of the transport phenomena in the presence of magnetic fields in somewhat ide-
alized situations. We wish to remark that the description of magneto-transport effects in
realistic materials is rather demanding and requires a proper account of several features
(such as energy dependence of the relaxation time, deviations from parabolic bands,
detailed shape of the Fermi surfaces especially in the presence of a complicated con-
nectivity in the repeated zone scheme, accurate analysis of the Boltzmann transport
equations). We cannot enter in these and other aspects, and we refer for more elab-
orated models and discussions to the classic book by R. A. Smith “Semiconductors”
(Cambridge University Press, Cambridge, 1978)].

Model 1. Magnetoresistivity and Hall Effect in an Isotropic One-Band Model

We consider here the magnetoresistivity and the Hall effect in the case of a single
type of carriers (electrons or holes) in a parabolic energy band. For simplicity we use
a model approach to the motion of electrons (or holes); the treatment with the more
rigorous Boltzmann equation would give in the present case the same results.

The classical equation of motion of an electron, in a dissipative medium, in the
presence of an electric field E, and a magnetic field B reads

m∗ dv
dt

= (−e)E + (−e)

c
v × B − m∗

τ
v, (15.35a)

where m∗ is the effective mass of the electron, and a damping term with constant
relaxation time τ has been included. In stationary conditions dv/dt = 0, and Eq.
(15.35a) becomes

v = − eτ

m∗ E − eτ

m∗c
v × B. (15.35b)

We specify the above equation in the geometry of Figure 15.9, with the electric field
in the xy plane and the magnetic field in z-direction; Eq. (15.35b) becomes

⎧
⎪⎨
⎪⎩

vx = − eτ

m∗ Ex − ωcτvy,

vy = − eτ

m∗ Ey + ωcτvx ,
(15.36a)

where ωc = eB/m∗c is the cyclotron frequency. From Eqs. (15.36a) we have
⎧
⎪⎪⎨
⎪⎪⎩

vx = − eτ

m∗
1

1 + ω2
cτ

2 (Ex − ωcτ Ey),

vy = − eτ

m∗
1

1 + ω2
cτ

2 (ωcτ Ex + Ey).

(15.36b)
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Thus the current density J = n(−e)v, (where n is the electron density) is related to the
electric field via the magnetoconductivity tensor σ (B) given by

σ (B) = ne2τ

m∗
1

1 + ω2
cτ

2

�
1 −ωcτ

ωcτ 1

�
. (15.37)

Notice that σxy(B) = −σyx (B), which is a particular case of the general Onsager
relations.

Equation (15.37) provides the magnetoconductivity for a parabolic band with con-
stant (i.e. energy independent) relaxation time. Inversion of the matrix (15.37) gives
the magnetoresistivity tensor

ρ(B) = m∗

ne2τ

�
1 +ωcτ

−ωcτ 1

�
. (15.38)

From Eq. (15.38), we see that the diagonal (or parallel) magnetoresistivity ρxx(B), the
Hall magnetoresistivity ρyx (B), and the Hall coefficient have the expressions

ρxx (B) = m∗

ne2τ
, ρyx (B) = − B

nec
, RHall(B) = − 1

nec
. (15.39)

Thus in the parabolic one-band model with a single relaxation time, the diagonal mag-
netoresistivity turns out to be independent of B, and we have ρxx (B) = ρxx (0) =
m∗/(ne2τ ). Even more important, the Hall coefficient is independent of the effective
mass and of the relaxation time; it depends only on the carrier concentration and charge
sign. Also notice that in the case of positive holes, the off-diagonal matrix elements in
Eqs. (15.37)–(15.39) change sign.

The results summarized in Eq. (15.39), obtained in the rather idealized one-band
model, are to be taken only as indicative, and cannot be used as they stand for quanti-
tative descriptions of realistic conductors. It is important in fact to notice that a proper
account of the energy dependence of the relaxation time, or of the anisotropy of the
energy bands, modify the results of Eq. (15.39); in particular, a dependence of ρxx (B)

on B is actually always observed in experiments. For these reasons, we consider the
slightly more sophisticated two-band model, representing two groups of carriers.

Model 2. Magnetoresistivity and Hall Effect in an Isotropic Two-Band Model

Interesting new features appear in the study of magnetoresistivity and Hall effect within
the two-band model. For simplicity we suppose that the two bands are parabolic, with
effective masses m1 and m2; we also assume that the relaxation times τ1 and τ2 are
constant for each group of carriers. The two-band model is useful to provide insight
of transport phenomena in crystals with two groups of carriers of the same type (but
different masses or relaxation times) or for mixed type carriers; we consider specifically
this last situation.

Consider a material with n electrons (per unit volume) of mass m1 and relaxation
time τ1, and p holes of mass m2 and relaxation time τ2. The magnetoconductivity is
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just the sum of the contributions from each group of carriers. Using Eq. (15.37) for
electrons, and the appropriate modified form for positive holes, we obtain

σ (B) =
�

A1 −B1
B1 A1

�
+

�
A2 B2

−B2 A2

�
=

�
A1 + A2 −B1 + B2
B1 − B2 A1 + A2

�
, (15.40)

where

A1 = σ1

1 + ω2
1τ

2
1

, B1 = σ1ω1τ1

1 + ω2
1τ

2
1

, σ1 = ne2τ1

m1
, (15.41a)

A2 = σ2

1 + ω2
2τ

2
2

, B2 = σ2ω2τ2

1 + ω2
2τ

2
2

, σ2 = pe2τ2

m2
. (15.41b)

The magnetoresistivity tensor is obtained by inverting the magnetoconductivity tensor
(15.40); it holds

ρ(B) = 1

(A1 + A2)2 + (B1 − B2)2

�
A1 + A2 B1 − B2

−B1 + B2 A1 + A2

�
. (15.42)

Consider first the parallel component ρxx (B) of the magnetoresistivity tensor of
Eq. (15.42); using expressions (15.41) one obtains

ρxx (B) = σ1 + σ2 + σ1ω
2
2τ

2
2 + σ2ω

2
1τ

2
1

(σ1 + σ2)2 + (σ1ω2τ2 − σ2ω1τ1)2 . (15.43)

It is straightforward to verify that ρxx (B) > ρxx (0); thus ρxx (B) − ρxx (0) is an
essentially positive quantity for any value of the magnetic field.

For very high magnetic fields (such that ω1τ1 � 1 and ω2τ2 � 1), Eq. (15.43)
shows that in general ρxx (B → ∞) is finite, and thus there is saturation of the magne-
toresistivity; the only remarkable exception occurs when

σ1ω2τ2 ≡ σ2ω1τ1 =⇒ n = p.

When the two groups of carriers of opposite type (electrons and holes) have the same
concentration, then ρxx (B → ∞) = ∞ and no saturation occurs.

Consider now the off-diagonal magnetoresistivity transport parameter ρyx (B); from
Eqs. (15.42) and (15.41) one obtains

ρyx (B) = −σ1ω1τ1(1 + ω2
2τ

2
2 ) + σ2ω2τ2(1 + ω2

1τ
2
1 )

(σ1 + σ2)2 + (σ1ω2τ2 − σ2ω1τ1)2 . (15.44a)

For high magnetic fields (i.e. ωiτi � 1), the above expression simplifies in the form

ρyx (B → ∞) ≈ − ω1τ1ω2τ2

σ1ω2τ2 − σ2ω1τ1
= − B

(n − p)ec
. (15.44b)

The Hall parameter becomes

RHall(B → ∞) = − 1

(n − p)ec
, (15.44c)
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a result which is independent of relaxation time and is governed by the difference of the
density of electrons and holes. It is easy to understand qualitatively the limiting result
(15.44c); for high values of B, the deflection of carriers produced by the magnetic field
increases. Since electrons and holes have opposite charges and move in opposite direc-
tions, they are deflected on the same side; thus the effective number of carriers entering
in Eq. (15.44c) is given by the difference of the electron and hole concentrations.

15.6 Quantum Hall Effects

15.6.1 Integer Quantum Hall Effect

In the previous section we have considered some effects of magnetic fields on transport
properties in three-dimensional materials. In this section we present some aspects of
transport measurements under strong magnetic fields for the two-dimensional electron
gas; the observed effects have opened new areas of investigation and brought major
breakthroughs in the comprehension of the two-dimensional structures and new states
of condensed matter.

The transport properties of two-dimensional conductors, when observed in high
purity samples, at very low temperatures and strong magnetic fields, show striking
departure from the classical behavior; in particular the Hall resistance ρxy(B) versus
B exhibits flat plateaus, from which one can obtain the universal constant h/e2, now
known as the von Klitzing constant. In the plateau regions the Hall resistance is given
exactly by h/e2 divided by an integer, and its experimental value is

RK = h

e2 = 25812.807 �. (15.45)

Measurements, performed even on samples of different origin, turn out to be repro-
ducible within the astonishing accuracy of one part per billion (or so), and for this reason
the Hall effect has attained a special role in metrology as the standard of resistance
[see for instance P. J. Mohr, B. N. Taylor and D. B. Newell “CODATA recommended
values of the fundamental physical constants: 2006” Rev. Mod. Phys. 80, 633 (2008)].

The quantum Hall effect was first reported for the two-dimensional electron gas
in the inversion layer of a silicon metal-oxide-semiconductor field-effect-transistor at
T = 1.5 K and B = 18 Tesla by K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev.
Lett. 45, 494 (1980). In the device, the density of surface electrons can be controlled
and changed by varying the MOSFET gate voltage; the Hall resistance shows fixed
values (1/i)(h/e2) (with i integer number) around experimentally well-defined surface
carriers concentrations, while the longitudinal resistance is vanishingly small.

Degenerate two-dimensional electron systems can be also realized at the interface
between GaAs and (n-doped) Alx Ga1−x As; nearly ideal semiconductor heterostruc-
tures are prepared by molecular beam epitaxy techniques. As already discussed in
Section 14.4, the electrons at the interface are confined by the potential well originated
from the conduction band offset; the motion perpendicular to the interface is quan-
tized, and, even when all the carriers are trapped in the lowest ground state, the motion


