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where the parameter τ is an arbitrary large quantity. The quantum expression of the
conductivity of Eq. (11.44) holds only in the ideal case of negligible broadening (or
very large lifetime) of electronic states. On the contrary, the semiclassical Boltzmann
approach of Eq. (11.38) holds also for finite lifetimes, and could be extended to more
realistic materials characterized by energy-dependent broadening parameters.

The above considerations help to clarify some aspects of the semiclassical approach
and of the quantum treatment. Within the adopted approximations, the Boltzmann
framework appears suitable in treating intraband transitions, where relaxation times
play a key role. On the other side, the higher energy band-to-band transitions are
relatively less sensible to broadening effects, which often may be ignored in the quantum
treatment of interband optical properties. For these reasons, in the present chapter on
intraband transport we focus on the semiclassical Boltzmann approach, while in the
next chapter on interband transitions the quantum approach is followed.

11.6 The Boltzmann Equation in Electric Fields and
Temperature Gradients

11.6.1 The Transport Equations in General Form

In the previous sections we have studied transport effects due to the presence of electric
fields in samples at uniform temperature (i.e. in isothermal conditions); we consider
now transport equations in the presence of electric fields and temperature gradients. As
usual, we consider the simplest possible electronic structure of the metal with a single
conduction band of interest of energy E(k); the influence (if any) of the temperature
on the energy band structure E(k) is assumed to be negligible.

In a crystal kept at non-uniform temperature, it is convenient to define the local
equilibrium distribution function f0(k, r) as

f0(k, r) = 1

exp[(E(k) − μ(r))/kB T (r)] + 1
; (11.45)

the local equilibrium distribution function f0(k, r), in addition to k, depends implicitly
on r since the local temperature T = T (r) is a function of r, and the chemical poten-
tial μ = μ(T (r), n(r)) = μ(r) depends on r via the local temperature T (r) and the
local electron density n(r). Notice that the local chemical potential μ(r) at the point r,
entering in Eq. (11.45), is just the chemical potential of an ideal infinite sample at ther-
modynamic equilibrium, characterized by band structure E(k), uniform temperature
T equal to T (r), and uniform electron density n equal to n(r).

In the following we need the gradients of f0 with respect to k and r; these are given
by

∂ f0

∂r
= ∂ f0

∂E
kB T

∂

∂r
E(k) − μ

kB T
= ∂ f0

∂E

�
−∂μ

∂r
− E(k) − μ

T

∂T

∂r

�
, (11.46a)
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and

1

�
∂ f0

∂k
= 1

�
∂ f0

∂E

∂E(k)

∂k
= ∂ f0

∂E
v(k) . (11.46b)

To simplify somewhat the notations, the k-dependence of the group velocity and of the
energy band is often left implicit.

The Boltzmann equation (11.28) for the stationary distribution f (r, k) in the pres-
ence of an electric field E and temperature gradient is

∂ f

∂r
· v + 1

�
∂ f

∂k
· (−e)E = − f − f0

τ
= − f1

τ
.

Since the electric field and temperature gradient are usually small, we can assume that
f1 is linear in these variables; then we can put f = f0 on the left-hand side of the
above equation and obtain

f1 = −τ
∂ f0

∂r
· v − τ

�
∂ f0

∂k
· (−e)E .

Using Eqs. (11.46), the stationary nonequilibrium distribution function becomes

f1 =
�

−∂ f0

∂E

	
τ

�
−e E − ∇μ − E − μ

T
∇T

�
· v, (11.47)

where ∇ = ∂/∂r indicates the gradient with respect to space variable r.
We remind the general charge and energy transport equations (11.29), here re-written

in a slightly different form

J = 1

4π3

�
(−e) v f1 dk ; U = 1

4π3

�
(E − μ) v f1 dk − μ

e
J . (11.48)

Furthermore (though not strictly necessary) we suppose that the system is isotropic, so
that transport kinetic parameters become scalar quantities, rather than tensors. Inserting
Eq. (11.47) into Eq. (11.48) one obtains

⎧
⎪⎪⎨
⎪⎪⎩

J = e K0
�
e E + ∇μ

� + e
K1

T
∇T,

U = −K1
�
e E + ∇μ

� − K2

T
∇T − μ

e
J .

(11.49)

The expressions of the kinetic coefficients K0, K1, K2 are

Kn = 1

4 π3

�
τ (�e · v)2 (E − μ)n

�
−∂ f0

∂E

	
dk , n = 0, 1, 2, (11.50)

where�e is the unit vector in the direction of the electric field; under the assumption of
isotropy, the direction of �e becomes irrelevant, and can be taken, for instance, in the
x-direction.
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Figure 11.11 Schematic representation of a bar of homogeneous material, whose ends are kept
at different temperatures.

It is convenient to rewrite the two basic transport equations (11.49) in a slightly
different form, which is more suitable for the interpretation of the thermoelectric phe-
nomena. The first of Eq. (11.49) can be cast in the form

J = e2K0

�
E + 1

e
∇μ − S(T ) ∇T

�
with S(T ) = − 1

e T

K1

K0
, (11.51)

where the transport coefficient S is called absolute thermoelectric power or Seebeck
coefficient. From Eqs. (11.51) we see that the current density J consists of three contri-
butions. The first term e2K0 E is the standard drift termσ0 E, where σ0 is the conductivity
of the metal. The second one is due to the inhomogeneity (i.e. to the r-dependence) of
the chemical potential. The third is due to the presence of a temperature gradient. It is
interesting to notice that the energy dissipated per unit time and unit volume

P = E · J = J 2

σ0
− 1

e
∇μ · J + S(T )∇T · J ,

besides the essentially positive Joule term J 2/σ0 (irreversible heat), contains two addi-
tional terms linear in J , which can be either positive or negative (reversible heat).

For what concerns the transport equation for the energy flux, it is convenient to
obtain [e E +∇μ] from the first of Eqs. (11.49) and replace it into the second one; this
gives

U =
�
− K1

e K0
− μ

e

�
J − ke ∇T with ke = 1

T

�
K2 − K 2

1

K0

�
, (11.52)

where the transport parameter ke is called electron thermal conductivity.
The physical meaning of ke is easily established if one considers a metal in the

presence of a uniform temperature gradient ∇T and in open circuit situation, so that
J = 0 (see Figure 11.11). In this case, Eq. (11.52) takes the form U = −ke∇T ; this
shows that the energy density (or heat density) flowing through the device is opposite
and linear to the temperature gradient, with proportionality constant ke.

11.6.2 Thermoelectric Phenomena

We discuss now some applications of Eqs. (11.51) and (11.52), which are the basic
equations controlling transport in (isotropic) materials. After a few preliminary
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considerations on equilibrium conditions and isothermal conditions, we pass to study
some typical thermoelectric circuits.

Drift and Diffusion Currents in Isothermal Conditions

As a first application, consider the electron current density in a metal in isothermal
conditions, but with a non-uniform carrier concentration ∇n �= 0; this implies ∇μ �= 0.
Putting ∇T = 0 into Eq. (11.51) we have

J = σ0

�
E + 1

e
∇μ

�
. (11.53)

We can thus distinguish a drift current density Jdrift = σ0 E and a diffusion current
density Jdiff = σ0∇μ/e.

Consider, for example, a metal with free-electron-like conduction band. In this
case σ0 = n e2τ/m∗, the chemical potential reads μ = (�2/2m∗)(3π2n)2/3 and
∇μ/μ = (2/3)∇n/n. The current density (11.53) in the metal can thus be written as

J = n e μeE + e D ∇n , (11.54)

where μe = eτ/m∗ is the electron mobility, and D is the diffusion coefficient

D = 2

3

EF

e
μe , (11.55a)

where the chemical potential has been here indicated with EF .
In the case the free-electron gas is non-degenerate and follows the Boltzmann distri-

bution, we have ∇n/n = ∇μ/kB T . The current density is again given by Eq. (11.54),
but now the diffusion coefficient becomes

D = kB T

e
μe . (11.55b)

Relations (11.55a) and (11.55b) are the Einstein relations between mobility and diffu-
sion coefficient for the degenerate and non-degenerate electron gas, respectively.

Consider now Eq. (11.51) in isothermal conditions ∇T = 0 and in open circuit
situation J = 0. Indicating with φ(r) the electrostatic potential we have

−∇φ + 1

e
∇μ = 0 =⇒ (−e)φ + μ ≡ const.

As expected the electrochemical potential μ+(−e)φ is uniform throughout the sample
in equilibrium conditions.

Seebeck Effect and Thermoelectric Power

When a temperature gradient is established in a long bar (in open circuit situation) an
electric field has to set in, so to prevent any net carrier flux. Consider in fact a specimen
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with a cool end at temperature T0 and a hot end at temperature T1 (see Figure 11.11).
In open circuit situation J = 0 and the electric field can be obtained from Eq. (11.51)
in the form

E = −1

e
∇μ + S(T )∇T . (11.56)

The potential difference between the end points P0 and P1, at temperatures T0 and T1,
is

φ1 − φ0 = −
� P1

P0

E · dl = 1

e
(μ1 − μ0) −

� T1

T0

S(T )dT. (11.57)

Thus the difference of the electrochemical potentials at the ends of the bar is related to
the line integral of the Seebeck coefficient.

The thermoelectric power S(T ) of a material can be measured by means of the
standard bimetallic circuit of Figure 11.12, in which the two junctions between metal
A and metal B are kept at different temperatures. Using the relation

−∇φ = −1

e
∇μ + S(T )∇T,

it is easy to evaluate the potential difference at the extremal points P0 and P3 (kept at
the same temperature T0 = T3 so that μ0A ≡ μ3A). The integrand is the scalar product
of the above expression for dl, and the integral can be carried out along any line going
from P0 to P3 within the circuit (conveniently broken into five parts). We have

φ1A − φ0A = 1

e
(μ1A − μ0A) −

� T1

T0

SA(T ) dT,

φ1B − φ1A = 1

e
(μ1B − μ1A),

φ2B − φ1B = 1

e
(μ2B − μ1B) −

� T2

T1

SB(T ) dT ,

φ2A − φ2B = 1

e
(μ2A − μ2B),

φ3A − φ2A = 1

e
(μ3A − μ2A) −

� T3

T2

SA(T ) dT ,

where Ti = T (Pi ). Summing up the above relations we have

φ3A − φ0A = −
� T1

T0

SA(T ) dT −
� T2

T1

SB(T ) dT −
� T0

T2

SA(T ) dT .

It follows

φ3A − φ0A =
� T2

T1

SA(T ) dT −
� T2

T1

SB(T ) dT . (11.58)
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P1 P2

P3P0

T0 = T3

metal Ametal Ametal Ametal A

metal B

T1 T2

Figure 11.12 Standard bimetallic circuit to measure the thermoelectric effect. The two junctions
between the metals are kept at different temperatures (T1 �= T2); a voltage appears between points
P0 and P3.

Thus if we choose a material B with SB(T ) known (often lead is taken because its
thermoelectric power is negligible) and vary T2 with respect to T1 we can obtain an
experimental determination of SA(T ), by measuring the potential difference φ3A−φ0A.

Thomson Effect

When an electric current flows in a given homogeneous material in the presence of a
temperature gradient, heat is released or absorbed reversibly at a rate depending on the
current density and on the nature of the material; if the direction of current is reversed,
the Thomson effect also changes sign (contrary to the Joule heating effect).

To study the Thomson effect, we imagine that temperature gradient, electric field
and density current depend on a single direction (say x), and we consider a (small)
cylinder of section �0 and length d0 with its axis parallel to J, and two sections at
the temperatures TA and TB , respectively; for simplicity we also suppose that the
temperature is kept constant and equal to TA on the left side of the cylinder, while
it is kept constant and equal to TB on the right side of the cylinder. The geometry is
schematically indicated in Figure 11.13.

Figure 11.13 Schematic figure for the calculation of the Thomson coefficient.
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When a current J flows from a point at temperature TA to a point at temperature TB

reversible heat is generated in the cylinder at the rate

δQ

dt
= −J�0

� TB

TA

Krev(T ) dT, (11.59)

where Krev(T ) is known as Thomson coefficient, and J�0 = I is the current through the
cylinder of section �0 under consideration. We now prove that the Thomson coefficient
is related to the absolute thermoelectric power through the relationship

Krev(T ) = T
dS(T )

dT
. (11.60)

The internal energy fluxes across the basis of the cylinder at sections A and B are
respectively

UA =
�
− K1(TA)

eK0(TA)
− μA

e

�
J and UB =

�
− K1(TB)

eK0(TB)
− μB

e

�
J ,

as can be seen from Eq. (11.52) (taking into account that temperature gradients at the
left and right sides of the cylinder are assumed to be zero).

The heat δQ generated in the time dt in the cylinder of volume V = �0d0 is given
by

δQ = dU + δL ,

where dU is the energy which accumulates in the time dt because of the unbalance
between energy flowing in and out of the considered cylinder, and δL is the work
performed by the electric field in the time dt . We have

dU

dt
=

�
− K1(TA)

eK0(TA)
− μA

e
+ K1(TB)

eK0(TB)
+ μB

e

�
J�0 . (11.61a)

Similarly, using Eq. (11.51) for the electric field, we have

δL

dt
= �0

� B

A
J · E dl = �0

� B

A
J

�
1

σ0
J − 1

e
∇μ + S(T )∇T

�
dl

= �0

�
1

σ0
J 2d0 − J

e
(μB − μA) + J

� TB

TA

S(T )dT

�
. (11.61b)
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From Eqs. (11.61), and disregarding the Joule heating J 2V /σ0, we obtain for the
reversible heat generation rate

δQ

dt
=

�
− K1(TA)

eK0(TA)
+ K1(TB)

eK0(TB)

�
J�0 + J�0

� TB

TA

S(T ) dT

= [TA SA(T ) − TB SB(T )]J�0 + J�0

� TB

TA

S(T ) dT .

Performing an integration by parts, it follows

δQ

dt
= −J�0

� TB

TA

T dS(T ) = −J�0

� TB

TA

T
dS

dT
dT (11.62)

and this proves the anticipated Eq. (11.60) for the Thomson coefficient.

Peltier Effect

Heat is generated reversibly not only when current flows in a given homogeneous
material in the presence of temperature gradient, but also when current flows across a
junction between two contacting materials (Peltier effect). If the direction of current
changes, the Peltier effect changes sign (contrary to the Joule heating effect).

For a quantitative analysis consider the standard bimetallic circuit of Figure 11.14
in isothermal conditions (∇T = 0) and with a current density J flowing throughout
the circuit. Across the contact between metal A and metal B the rate (per unit time and
section of area �0) of reversible heat released or absorbed is

δQ

dt
= �AB J�0, (11.63)

where J is supposed to flow from metal A to metal B. The Peltier coefficient of a given
metal is connected to the Seebeck coefficient by the simple equality

�(T ) = T S(T ) , (11.64)

together with the relation �AB = �A − �B .

metal Ametal Ametal A

metal B

Σ0

Figure 11.14 Standard bimetallic circuit for illustration of the Peltier effect; the temperature is
uniform throughout the whole circuit.
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To show this, we can use Eq. (11.62) (with a trivial extension of its meaning) keeping
T constant, and S changing not because of temperature but because of inhomogeneity
in the material. We have

δQ

dt
= −J�0 T [SB(T ) − SA(T )],

and Eq. (11.64) is thus proved.

Considerations on Other Transport Effects

We have seen that the Boltzmann equation is very useful for the description of transport
effects in metals. The transport phenomena we have investigated have been confined
to the simplest situations in which the driving perturbation is a static or oscillating
electric field (electrical conductivity effects), or a static electric field and a temperature
gradient (thermal conductivity, Seebeck, Peltier, and Thomson effects).

The Boltzmann equation is of major help for several other transport phenomena.
These include transport effects in the presence of electric and magnetic fields (Hall
and magnetoresistivity effects), galvanomagnetic effects (Righi-Leduc effect, Nernst
effect, Etthingshausen effect, etc.), “anomalies” or “giant effects” (in particular situa-
tions, for instance in the presence of magnetic impurities). A variety of challenging sit-
uations occur when the “phonon thermal bath,” that usually ensures relaxation toward
equilibrium of the electron distribution function, is itself dragged out from thermal
equilibrium.

The Boltzmann equation has been widely applied to describe transport properties
in semiconductors, following essentially the same semiclassical concepts given for
metals, but keeping in mind some obvious differences. Among these, the fact that the
distribution of conduction electrons in a semiconductor is in general non-degenerate,
because of the low density of carriers. Furthermore we have to consider both electrons
in the conduction band and holes in the valence band; and in general their contribution
to a given transport phenomenon is not simply additive. These differences may lead
to profound effects with respect to metals. For instance the electronic conductivity of
a semiconductor is in general several orders of magnitude lower than that of a metal;
nevertheless the thermoelectric power of a semiconductor, due to the presence of the
energy gap, is in general much higher than typical thermopowers of metals. We do not
dwell on other semiclassical aspects of transport properties, except for the discussion
in Section 15.5 of magnetoresistivity and the Hall effect.

11.6.3 Transport Coefficients and Efficiency of Good Thermoelectric
Materials

Thermoelectric Materials and Efficiency Parameter

Thermoelectric materials, for solid state devices without moving parts, have always
attracted great technological interest especially for realization of refrigerators or power
generators. Thermoelectric generators use the Seebeck effect to produce a voltage
difference, while refrigerators make use of the Peltier effect for cooling purpose; these
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solid state devices are extremely reliable, although at the moment not yet competitive
with conventional vapor-compressors or other mechanical systems, because of low
efficiency. In this section we analyze more closely the transport properties of crystals,
and, most importantly, we try to infer qualitatively what should be the features of
electronic band structure, that characterize good thermoelectric materials.

So far in the study of the thermoelectric effects, we have considered several transport
coefficients (electric conductivity, Seebeck coefficient, thermal conductivity of elec-
trons, etc.). However there is an important parameter, dubbed as efficiency parameter,
that is routinely used to characterize thermoelectric materials. The efficiency parameter
p of thermoelectric materials (also called figure of merit p = Z T ) is the dimensionless
quantity defined as

p = T σ S2

ke + kl
, (11.65a)

where T is the temperature, σ is the conductivity, S is the Seebeck coefficient, ke is
the thermal electron conductivity, and kl is the thermal lattice conductivity. In situa-
tions in which the lattice contribution to the thermal conductivity is (or can be made)
sufficiently smaller with respect to electron contribution, the efficiency parameter can
be approximated by the upper value

pe = T σ S2

ke
(kl � ke), (11.65b)

where the subscript to p denotes that we are here taking into account only the elec-
tronic thermal conductivity. Similarly, in situations in which ke � kl (typically, but
not exclusively, doped semiconductors because of the small number of carriers) the
efficiency parameter can be approximated by the value

pl = T σ S2

kl
(ke � kl). (11.65c)

One of the best and most studied thermoelectric materials is Bi2Te3, which at room
temperature has efficiency parameter near unity; however competitive thermoelectrics
should have values significantly higher. This explains the continued search of novel ther-
moelectric materials with high efficiency parameters, and the importance of guidelines
and qualitative criteria to design them. Thermoelectric materials are usually heavily
doped semiconductors in degenerate regime and the theory of metals may be applied.

General Expression of the Kinetic Coefficients

The general expression of the kinetic coefficients for isotropic materials in the one-band
approximation is given by Eq. (11.50) here re-written

Kn = 1

4π3

�
τ (�e · v)2 (E − μ)n

�
−∂ f0

∂E

	
dk, n = 0, 1, 2.
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The three-dimensional integral in dk throughout the Brillouin zone is conveniently
broken into a two-dimensional integral on constant energy surfaces and an integra-
tion on the energy variable. For this purpose we introduce the generalized transport
distribution function �(E) so defined

�(E) = 1

4π3

�
τ (�e · v)2δ

�
E(k) − E

�
dk = 1

4π3

�

E(k)=E

τ (�e · v)2

|∇Ek| dS.

(11.66)

For instance, for the free-electron gas and energy-independent relaxation time, the
generalized transport distribution function has the power law form �(E) = C E p with
p = 3/2; this and other models of transport distribution functions will be considered
for qualitative considerations.

In terms of the generalized transport distribution function of the material under
investigation, the kinetic parameters take the form

Kn =
� �

−∂ f0

∂E

	
(E − μ)n �(E) dE, n = 0, 1, 2 . (11.67)

Without entering in the details of specific materials, it is instructive to estimate the
kinetic coefficients and the transport parameters in some simple but significant models
for the transport distribution function �(E).

Case of Smooth �(E) and the Sommerfeld Expansion

Consider now the case that the generalized distribution function �(E) is reasonably
smooth around the chemical potential, so that we can exploit the Sommerfeld expansion
for the calculation of the kinetic parameters. In the case of simple metals, for example,
we have already seen that the Sommerfeld expansion is well justified.

The Sommerfeld expansion, introduced in Section 3.2, applies to any function G(E)

sufficiently smooth in the thermal shell kB T around the Fermi energy, and reads

� �
−∂ f0

∂E

	
G(E) dE = G(μ) + π2

6
k2

B T 2
�

d2G

dE2

	

E=μ

+ O(T 4).

Setting G(E) = (E −μ)n�(E) in the above equation, the kinetic coefficients (11.67),
taking into account for simplicity only the leading terms, become

K0 = �(μ) + O(T 2), (11.68a)

K1 = π2

3
k2

B T 2��(μ) + O(T 4), (11.68b)

K2 = π2

3
k2

B T 2�(μ) + O(T 4), (11.68c)

where the function �(E) and its derivative are calculated at the Fermi energy E = μ.
Using Eqs. (11.68), we can obtain the conductivity, the Seebeck coefficient, the electron
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thermal conductivity, and the figure of merit (for what concerns the electronic part) of a
thermoelectric material. In all the cases where the Sommerfeld expansion is applicable,
they have the expression

σ0(μ,T ) ≡ e2 K0 = e2�(μ), (11.69a)

S(μ,T ) ≡ − 1

e T

K1

K0
= −π2

3

kB

e
kB T

��(μ)

�(μ)
, (11.69b)

ke(μ,T ) ≡ 1

T

�
K2 − K 2

1

K0

�
= π2

3

k2
B

e2 T σ0, (11.69c)

pe(μ,T ) ≡ T σ0S2

ke
= π2

3
k2

B T 2
�

��(μ)

�(μ)

�2

. (11.69d)

A few comments on the above results are worthwhile. First, consider the thermoelectric
power S(T ), whose natural unit of measure is

kB

e
≡ 86.17 µV/K ;

this value also sets the order of magnitude of interesting thermoelectric materials. The
validity of Eqs. (11.69) automatically implies that the distribution function is reasonably
smooth around the Fermi energy; this means kB T ��(μ)/�(μ) � 1. The occurrence
of this condition, tendentially depresses the Seebeck coefficient given by Eq. (11.69b),
and this effect is even stronger on the efficiency parameter given by Eq. (11.69d).

Transport coefficients in simple metals can be well-described within the Sommer-
feld expansion, because of the smooth character of the density-of-states and related
generalized transport distribution function. It is instructive to estimate the transport
coefficients in simple metals, noticing however that the specific transport properties of
actual materials are rather sensitive to the energy dependence of the relaxation time and
to the peculiarities of the Fermi surface. From Eq. (11.69b), it is seen that the thermo-
electric power can be either negative or positive depending on the sign of d�/dE at the
Fermi energy. To evaluate the order of magnitudes, suppose that the generalized distri-
bution function has a power law form of the type �(E) ≈ C E p (for the free-electron
gas p = 3/2). Then we can estimate

kB T
��(μ)

�(μ)
≈ kB T

μ
= kB T

kB TF
= T

TF
; (11.70a)

from Eqs. (11.69b,d) it follows

S(T ) ≈ −kB

e

T

TF
and pe(T ) ≈

�
T

TF

	2

. (11.70b)

With T ≈ 300 K and TF ≈ 100 T we expect a (negative) thermoelectric power of the
order of µV/K in normal metals at room temperature. It is also evident that the figure
of merit of ordinary simple metals is very poor.
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Another consideration concerns the relation between the electron thermal conduc-
tivity and the electrical conductivity. From the expression (11.69c) of the electron
thermal conductivity ke, we see that the ratio of thermal to electrical conductivity is
proportional to T (Wiedemann-Franz law). Consider now the ratio

ke

T σ0
= L ≡ π2

3

k2
B

e2 ,

which is known as Lorentz number. The Lorentz number would actually be a univer-
sal constant (independent from the specific metal, temperature and relaxation time),
provided the approximations done in the transport equations are justified. If one goes
over the whole treatment, one realizes that the most vulnerable point is the relaxation
time approximation of the collision term. This approximation is justified above the
Debye temperature, where the electron-phonon scattering is the dominant process, and
at very low temperature, where the impurity scattering is dominant. In both temperature
regimes, the ratio ke/T σ0 is approximately the same for all metals. At intermediate
temperatures, however significant deviations may occur.

Case of Peaked Generalized Transport Distribution Function �(E)

What can be learned from Eqs. (11.69) and the comments done so far, is that smooth
distribution functions are not likely to produce good thermoelectric materials. From
this matter-of-fact consideration, several investigations in the literature have focused
on metals and materials with sharp transport distribution functions. Without entering
in specific details, we limit our considerations to a few qualitative remarks.

To model a peaked generalized distribution function �(E), we choose for simplicity
a Lorentzian function of the type

�(E) = C
�

(E − E0)2 + �2 , (11.71)

where E0 is the resonance energy, � is the width, and C is taken as constant. We study
the qualitative dependence of the kinetic parameters for large and small values of �

with respect to the thermal energy kB T .
We examine first the case kB T � �. This assumption mimics the situation where

the generalized distribution function changes smoothly on the thermal energy scale,
and the Sommerfeld expansion is still applicable; then the results expressed by Eqs.
(11.69) are still valid. We observe that for the Lorentzian function (11.71) it holds

��(E)

�(E)
= −2(E − E0)

(E − E0)2 + �2 and − 1

�
≤ −2(E − E0)

(E − E0)2 + �2 ≤ 1

�
.

We can thus estimate

��(μ)

�(μ)
≈ ± 1

�
for μ ≈ E0 ∓ �. (11.72a)

In the case the chemical potential can be settled at or near the energies E0 ∓ �, from
Eqs. (11.72a) and (11.69b,d) we obtain for the thermoelectric coefficient and the effi-
ciency parameter
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S(T ) ≈ ∓kB

e

kB T

�
and pe(T ) ≈

�
kB T

�

	2

. (11.72b)

From the comparison of these results with the ones of Eq. (11.70b), it is evident the
significant benefit achieved in thermoelectric power and efficiency values when the
broadening width � is in the range kB T < � � kB TF . However, the benefit cannot be
extended too much, since the condition kB T < � must be satisfied, and the Wiedemann-
Franz law of Eq. (11.69c) is still at work.

We discuss now the opposite case of extremely narrow resonances, such that � �
kB T . Evidently in this situation the Sommerfeld expansion cannot be applied; never-
theless, an instructive discussion can be elaborated assuming for simplicity a δ-like
shape for the transport distribution function

�(E) = Cδ(E − E0), (11.73a)

where E0 is the resonance energy, and C is an appropriate constant. Inserting
Eq. (11.73a) into the expression (11.67) of the kinetic parameters gives

Kn = C

�
−∂ f0

∂E

	

E=E0

(E0 − μ)n, n = 0, 1, 2. (11.73b)

From the above results, it is worthwhile to notice that the electron thermal conduc-
tivity ke = (1/T )(K2 − K 2

1 /K0) becomes exactly zero, and the corresponding effi-
ciency parameter pe becomes ideally infinity (of course in such a situation kl cannot
be neglected any more). This occurs because ke is proportional to the variance of an
appropriate distribution function, and the variance of a δ-like function is exactly zero.
The physical reason of the vanishing of the electron thermal conductivity is due to the
fact that no heat flow is possible without a spread of allowed energies; if the band width
of allowed energies is much smaller than kB T , charge current can flow without being
accompanied by heat flow, and any limitation on the performance of thermoelectrics
originated by the Wiedemann-Franz law is overcome.

Without taking too seriously the above results (based on the hypothetical model
of δ-like transport distribution function), it is evident the general message that sharp
transport distribution functions could lead to increased performance. This explains the
wide attention in the literature devoted to transition-metal compounds, rare-earth com-
pounds, multiband metals and alloys, superlattices and other low-dimensional systems,
where sharp structures in the density-of-states and in the generalized transport function
can occur in the operative range of interest. For what concerns the quest of materials
with lattice thermal conductivity as low as possible, much attention has been focused
on thermoelectric crystals with great chemical complexity, and in particular on skut-
terudites (such as CoAs3 and CoSb3) and clathrates (such as Na8Si46 and Na24Si136). A
prominent feature of these compounds is the presence of “cavities,” where interstitially
placed atoms can act as phonon-scattering centers to depress the thermal conductivity.
[For further information see for instance the review by Mahan (1998), the review by
Singh (2001), or the book of Nolas et al. (2001), and references quoted therein.]


