
Plasmon

In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation
consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just
like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective (a discrete number) oscillations of the free
electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a
plasmon polariton.

Derivation

Explanation
Role

Surface plasmons

Possible applications

Plasmon-Soliton

See also

Footnotes

References

External links

The plasmon was initially proposed in 1952 by David Pines and David Bohm[1] and was shown to arise from a Hamiltonian for the long-

range electron-electron correlations.[2]

Since plasmons are the quantization of classical plasma oscillations, most of their properties can be derived directly from Maxwell's

equations.[3]

Plasmons can be described in the classical picture as an oscillation of electron density with respect to the fixed positive ions in a metal.
To visualize a plasma oscillation, imagine a cube of metal placed in an external electric field pointing to the right. Electrons will move to
the left side (uncovering positive ions on the right side) until they cancel the field inside the metal. If the electric field is removed, the
electrons move to the right, repelled by each other and attracted to the positive ions left bare on the right side. They oscillate back and
forth at the plasma frequency until the energy is lost in some kind of resistance or damping. Plasmons are a quantization of this kind of
oscillation.

Plasmons play a large role in the optical properties of metals and semiconductors. Frequencies of light below the plasma frequency are
reflected by a material because the electrons in the material screen the electric field of the light. Light of frequencies above the plasma
frequency is transmitted by a material because the electrons in the material cannot respond fast enough to screen it. In most metals, the

plasma frequency is in the ultraviolet, making them shiny (reflective) in the visible range. Some metals, such as copper[4] and gold,[5]

have electronic interband transitions in the visible range, whereby specific light energies (colors) are absorbed, yielding their distinct
color. In semiconductors, the valence electron plasmon frequency is usually in the deep ultraviolet, while their electronic interband

transitions are in the visible range, whereby specific light energies (colors) are absorbed, yielding their distinct color[6][7] which is why
they  are  reflective.  It  has  been  shown that  the  plasmon frequency  may  occur  in  the  mid-infrared  and  near-infrared  region  when

semiconductors are in the form of nanoparticles with heavy doping.[8][9]

The plasmon energy can often be estimated in the free electron model as
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where  is the conduction electron density,  is the elementary charge,  is the electron mass,  the permittivity of free space,  the
reduced Planck constant and  the plasmon frequency.

Surface plasmons are those plasmons that are confined to surfaces and that interact strongly with light resulting in a polariton.[10] They
occur at the interface of a material exhibiting positive real part of their relative permittivity, i.e. dielectric constant, (e.g. vacuum, air,
glass and other dielectrics) and a material whose real part of permittivity is negative at the given frequency of light, typically a metal or
heavily doped semiconductors. In addition to opposite sign of the real part of the permittivity, the magnitude of the real part of the
permittivity  in  the  negative  permittivity  region  should  typically  be  larger  than  the  magnitude  of  the  permittivity  in  the  positive
permittivity region, otherwise the light is not bound to the surface (i.e. the surface plasmons do not exist) as shown in the famous book

by Heinz Raether.[11] At visible wavelengths of light, e.g. 632.8 nm wavelength provided by a He-Ne laser, interfaces supporting surface
plasmons are often formed by metals like silver or gold (negative real part permittivity) in contact with dielectrics such as air or silicon
dioxide. The particular choice of materials can have a drastic effect on the degree of light confinement and propagation distance due to
losses. Surface plasmons can also exist on interfaces other than flat surfaces, such as particles, or rectangular strips, v-grooves, cylinders,
and other  structures.  Many structures have been investigated due to the capability of  surface plasmons to confine light  below the
diffraction limit of light. One simple structure that was investigated was a multilayer system of copper and nickel. Mladenovic et al.

report the use of the multilayers as if its one plasmonic material.[12] The copper oxide is prevented with the addition of the nickel layers.
It is an easy path the integration of plasmonics to use copper as the plasmonic material because it is the most common choice for
metallic plating along with nickel. The multilayers serve as a diffractive grating for the incident light. Up to 40 percent transmission can
be achieved at normal incidence with the multilayer system depending on the thickness ratio of copper to nickel. Therefore, the use of
already popular metals in a multilayer structure prove to be solution for plasmonic integration.

Surface plasmons can play a role in surface-enhanced Raman spectroscopy and in explaining anomalies in diffraction from metal
gratings (Wood's  anomaly),  among other things.  Surface plasmon resonance is  used by biochemists  to  study the  mechanisms and
kinetics of ligands binding to receptors (i.e. a substrate binding to an enzyme). Multi-parametric surface plasmon resonance can be used
not only to measure molecular interactions but also nanolayer properties or structural changes in the adsorbed molecules, polymer layers
or graphene, for instance.

Surface plasmons may also be observed in the X-ray emission spectra of metals. A dispersion relation for surface plasmons in the X-ray

emission spectra of metals has been derived (Harsh and Agarwal).[13]

More  recently  surface  plasmons  have  been  used  to  control  colors  of  materials.[14]  This  is
possible since controlling the particle's shape and size determines the types of surface plasmons
that can be coupled into and propagate across it. This, in turn, controls the interaction of light
with the surface. These effects are illustrated by the historic stained glass which adorn medieval
cathedrals. Some stained glass colors are produced by metal nanoparticles of a fixed size which
interact with the optical field to give glass a vibrant red color. In modern science, these effects
have been engineered for both visible light and microwave radiation. Much research goes on first
in  the  microwave  range  because  at  this  wavelength,  material  surfaces  and  samples  can  be
produced mechanically because the patterns tend to be on the order of a few centimeters. The
production  of  optical  range  surface  plasmon  effects  involves  making  surfaces  which  have
features <400 nm. This is much more difficult and has only recently become possible to do in
any reliable or available way.

Recently, graphene has also been shown to accommodate surface plasmons, observed via near

field  infrared  optical  microscopy  techniques[15][16]  and  infrared  spectroscopy.[17]  Potential
applications of graphene plasmonics mainly addressed the terahertz to midinfrared frequencies,

such as optical modulators, photodetectors, biosensors.[18]

The position and intensity of plasmon absorption and emission peaks are affected by molecular adsorption, which can be used in
molecular sensors. For example, a fully operational device detecting casein in milk has been prototyped, based on detecting a change in

absorption of a gold layer.[19] Localized surface plasmons of metal nanoparticles can be used for sensing different types of molecules,
proteins, etc.

Plasmons are being considered as a means of transmitting information on computer chips, since plasmons can support much higher
frequencies (into the 100 THz range, whereas conventional wires become very lossy in the tens of GHz). However, for plasmon-based

electronics to be practical, a plasmon-based amplifier analogous to the transistor, called a plasmonstor, needs to be created.[20]

Plasmons have also been proposed as a means of high-resolution lithography and microscopy due to their extremely small wavelengths;
both of these applications have seen successful demonstrations in the lab environment.

Finally,  surface  plasmons  have  the  unique  capacity  to  confine  light  to  very  small  dimensions,  which  could  enable  many  new
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applications.

Surface plasmons are very sensitive to the properties of the materials on which they propagate. This has led to their use to measure the
thickness of monolayers on colloid films, such as screening and quantifying protein binding events. Companies such as Biacore have
commercialized instruments that operate on these principles. Optical surface plasmons are being investigated with a view to improve

makeup by L'Oréal and others.[21]

In 2009, a Korean research team found a way to greatly improve organic light-emitting diode efficiency with the use of plasmons.[22]

A group of European researchers led by IMEC has begun work to improve solar cell efficiencies and costs through incorporation of
metallic nanostructures (using plasmonic effects) that can enhance absorption of light into different types of solar cells: crystalline

silicon  (c-Si),  high-performance  III-V,  organic,  and  dye-sensitized.  [23]  However,  for  plasmonic  photovoltaic  devices  to  function

optimally, ultra-thin transparent conducting oxides are necessary.[24] Full color holograms using plasmonics[25] have been demonstrated.

Plasmon-Soliton  mathematically  refers  to  the  hybrid  solution  of  nonlinear  amplitude  equation  e.g.  for  a  metal-nonlinear  media
considering both the plasmon mode and solitary solution. A soliplasmon resonance is on the other hand considered as a quasiparticle

combining the surface plasmon mode with spatial soliton as a result of a resonant interaction.[26][27][28][29] To achieve one dimensional
solitary propagation in a plasmonic waveguide while the surface plasmons should be localized at the interface, the lateral distribution of
the filed envelop should also be unchanged.
Graphene-based waveguide is  a  suitable  platform for  supporting hybrid  plasmon-solitons due to  the large effective area and huge

nonlinearity.[30] For example, the propagation of solitary waves in a graphene-dielectric heterostructure may appear as in the form of

higher order solitons or discrete solitons resulting from the competition between diffraction and nonlinearity.[31][32]
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