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1 Introduction
In this tutorial we shall continue to develop the theory of linear response and
derive Onsager’s reciprocal relations. We shall start with an overview of the
fluctuations-dissipation theorem (FDT), which relates the susceptibility of a
quantity to the decay of equilibrium correlations of the same quantity. Then we
shall establish a relation between the response of one quantity to perturbation
in a different quantity.

Both the FDT and Onsager’s reciprocity relations rely on the assumption
that macroscopic response and decay process occur in the same manner as the
decay of equilibrium fluctuations - this assumption is called Onsager’s regression
hypothesis. It allows to study close-to-equilibrium processes using properties
of equilibrium states, specifically the Boltzmann distribution (or equipartition
theorem) for FDT and reversibility for Onsager’s reciprocity relations.

2 Overview: Static and dynamic fluctuations and
responses

You have already saw in class the following statements:

2.1 Fluctuation-response relation
Given a quantity x and a conjugate field f , i.e. H = H0−xf , the susceptibility
is

χ ≡ ∂ 〈x〉
∂f

=

〈
x2
〉
− 〈x〉2

T

For example, take x to be the number of particles N and f to be the chemical
potential.

1



2.2 Fluctuation-Dissipation relation in time
Given a quantity x and a time dependent conjugate field f(t), the susceptibility
is given by

Tα (t, t′) =
d

dt′
〈x(t)x(t′)〉Θ (t− t′)

where Θ (t− t′) is the Heaviside theta function which is 1 for t > t′ and 0
otherwise.

Example: Consider over-damped Brownian motion with harmonic poten-
tial. The Langevin equation is

mẍ+ λẋ+mω2
0x = f(t) + λη(t)

where f(t) is a driving force and η(t) a random force with

〈η(t)〉 = 0

〈η(t)η(t′)〉 = 2Dδ(t− t′)

i.e. white noise. The over-damped limit implies λ large enough so that the
inertia term can be neglected

ẋ = −µ
(
mω2

0x+ f(t)
)

+ η(t)

where we defined the mobility µ = λ−1. Fourier transforming

iωx(ω) = −µmω2
0x(ω) + µf(ω) + η(ω)⇒

x(ω) =
µf(ω) + η(ω)

iω + µmω2
0

Defining the power spectrum

(
z2
)
ω
≡

〈
|z (ω)|2

〉
=

ˆ ∞
−∞
〈z(t)z(0)〉 e−iωtdt

〈z(t)z(0)〉 =
1

2π

ˆ ∞
−∞

(
z2
)
ω
eiωtdω

we get that for f(t) = 0

(
x2
)
ω

=

〈
|η(ω)|2

〉
|iω + µmω2

0 |
2 =

(
η2
)
ω

ω2 + (µmω2
0)

2

From the fact that the noise is white we get
(
η2
)
ω

= 2D, i.e. independent of
frequency (which is the reason for the name “white noise”) so

(
x2
)
ω

=
2D

ω2 + (µmω2
0)

2 (1)
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Inverting the Fourier transform demands some complex analysis

〈x(t)x(t′)〉 =
D

π

ˆ ∞
−∞

e−iωt

ω2 + (µmω2
0)

2 dω

=
D

π

ˆ ∞
−∞

e−iωt

[(ω + iµmω2
0) (ω − iµmω2

0)]
dω

For t > 0 (t < 0) we can close the contour by a large semicircle with negative
(positive) imaginary part, hence

〈x(t)x(t′)〉 =
D

µmω2
0

e−µmω
2
0|t−t′| (2)

From the equipartition theorem mω2
0

〈
x2
〉

= T we get the Einstein relation
D = µT .

On the other hand, for f 6= 0 we have

〈x(ω)〉 =
µf(ω)

iω + µmω2
0

⇒

α(ω) =
µ

iω + µmω2
0

⇒ (3)

α(t− t′) = µe−µmω
2
0t (4)

Hence we find indeed

d

dt′
〈x(t)x(t′)〉 =

µT

µmω2
0

d

dt′
e−µmω

2
0|t−t′|

= µTe−µmω
2
0|t−t′| = Tα(t− t′)

2.3 The spectral Fluctuation-Dissipation relation
Using Fourier transform in time define

xω =

ˆ ∞
−∞

x(t)eiωtdt

〈xωxω′〉 ≡ 2πδ(ω + ω′)
(
x2
)
ω

αω =

ˆ ∞
−∞

α(t)eiωtdt

αω ≡ α′ + iα′′

Then the FDT is formulated as

2Tα′′ = ω
(
x2
)
ω

Example:
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In the previous example, from (3)

α′′ =
µω

ω2 + (µmω2
0)

2

while from (1) we get (
x2
)
ω

=
2µT

ω2 + (µmω2
0)

2 =
2T

ω
α′′

3 Onsager reciprocal relations

3.1 General relations
When several macroscopic quantities x1...xN deviate slightly from equilibrium
the linear response equation is (assuming that at equilibrium xi = 0)

ẋi = −λijxj (5)

There is obviously also a noisy force, but for this analysis we neglect it and treat
the quantities as deterministic. We wish to analyze the structure of the matrix
λij . For equilibrium fluctuations, thinking of an isolated system, we can expand
the entropy in the deviations xi to find

S ≈ S0 −
∑
jk

βjkxjxk

βjk =
1

2

∂2S

∂xj∂xk

and β is clearly a symmetric matrix. Define the generalized forces

Xi ≡ −
∂S

∂xi
=
∑
j

βijxj (6)

In terms of those we can write (5) as

ẋi = −
∑
j

γijXj

γ = λβ−1

Using (6) we find

〈Xixj〉 = −
ˆ
dxeS[x]

∂S

∂xi
xj

= −
ˆ
dx

∂

∂xi

(
eS[x]

)
xj

=

ˆ
dxeS[x]

∂xj
∂xi

= δij
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and from this together with Eq. (6) we can deduce

〈XiXj〉 =

〈
Xi

∑
j

βjkxk

〉
= βij

〈xixj〉 =

〈
xi
∑
j

(
β−1

)
jk
Xk

〉
=
(
β−1

)
ij

Now we invoke time reversibility (and time translation invariance), and demand
that the fluctuations satisfy

〈xi(t+ τ)xj(t)〉 = 〈xi(t− τ)xj(t)〉 = 〈xi(t)xj(t+ τ)〉 (7)

hence

1

τ
(〈xi(t+ τ)xj(t)〉 − 〈xi(t)xj(t)〉) =

1

τ
(〈xi(t)xj(t+ τ)〉 − 〈xi(t)xj(t)〉)⇒

〈ẋi(t)xj(t)〉 = 〈xi(t)ẋj(t)〉

Finally, we assume that the thermal fluctuations follow the same decay rule (5)
as perturbations caused by external forces - the Onsager regression hypothesis.
Then we can use (7) and find

〈ẋi(t)xj(t)〉 =

〈∑
k

γikXk(t)xj(t)

〉
= γij

〈xi(t)ẋj(t)〉 =

〈
xi(t)

∑
k

γjkXk

〉
= γji

So the result is
γij = γji (8)

Remark: The importance of the Onsager regression hypothesis is that it con-
nects the equilibrium analysis done above to non-equilibrium phenomena such
as currents. By current we mean a sustained change in a thermodynamic quan-
tity Ji ≡ dxi

dt which is induced by keeping the conjugate force Xi non-zero (but
small). Hence Onsager reciprocal relations tell us about the relations between
currents which are induced by the conjugates of other variables, such as ther-
moelectric effect. The next example will make this more clear.

3.2 Example
We will discuss now a specific example - the thermoelectric effect in which tem-
perature gradient induces charge current and electrostatic potential difference
induces heat flows. We will see how the Onsager reciprocity relations should be
used, which is not so trivial in this case.
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We wish to probe the connection between heat currentW and electric current
I when they are written as

W = l11∆T + l12∆φ

I = l21∆T + l22∆φ

We will not find l12 = l21, but instead the relation will be more subtle. Con-
sider two connected reservoirs of heat and (charged) particles. Assume that by
thermal fluctuation the first reservoir has temperature T and potential φ = 0
and the second temperature T + ∆T and potential ∆φ. Assume now that dn
electrons and energy dU pass from the first reservoir to the second reservoir, and
inspect how this changes the entropy. The change in entropy of the reservoirs is

dS1 = − 1

T
dU +

µ(T )

T
dn

dS2 =
1

T + ∆T
dU − µ(T + ∆T ) + e∆φ

T + ∆T
dn

dS = dS1 + dS2 ≈
[
−∆T

T 2

]
dU +

[
−∆T

e

∂

∂T

(µ
T

)
− ∆φ

T

]
edn

Identifying x1 = dU and x2 = edn we thus find

X1 =
∆T

T 2

X2 =
∆T

e

∂

∂T

(µ
T

)
+

∆φ

T

Hence (now using the correspondence between fluctuations kinetic and macro-
scopic currents) the currents W = dU

dt and I = edndt satisfy

W = −γ11
[

∆T

T 2

]
− γ12

[
∆T

e

∂

∂T

(µ
T

)
+

∆φ

T

]
I = −γ21

[
∆T

T 2

]
− γ22

[
∆T

e

∂

∂T

(µ
T

)
+

∆φ

T

]
and Onsager reciprocal relations implies γ12 = γ21.
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