7 Transport Properties

In investigating thermodynamic properties like specific heat, magnetic sus-
ceptibility, or the thermal expansion coefficient, an implicit assumption is
made that the system is in quasistatic equilibrium: The change of externally
controlled parameters (temperature, magnetic field, etc.) is very slow, and
the processes are reversible. However, the time evolution of the system, or
the behavior under nonequilibrium conditions, is of great importance as well.
This is the subject of irreversible thermodynamics, which is related to the
corresponding microscopic transport theory.

In this chapter we will concentrate on systems where the deviation from
equilibrium is small. When the external perturbation (the temperature gra-
dient, electric potential gradient . ..) is switched off, the system returns to its
equilibrium state in the time scale set by the relazation time. If the pertur-
bation is maintained over a time scale much longer than the relaxation time
then a steady flow of energy, particles, charge, and so forth, develops. For
small perturbations the response can be characterized by the proportionality
constants (called transport coefficients) between these quantities.

Here are the definitions for a few commonly used transport coefficients.
Note that while one of the parameters of the system is modified (e.g., a
temperature gradient is imposed), other, well-specified parameters must be
kept under control (e.g., no electric current is allowed):

—Thermal conductivity : &k = —jo/VT, Je =0

—Electrical conductivity : o = j./E, VT =0
—Peltier coefficient : IT = jg/je, VT =0
~Thermopower : S =E/VT, Je =0

—Hall coefficient : Ry = E,/(Hj;:), jp=0,VT =0

where jg, je, VT, E, and H are the heat current, electric current, temperature
gradient, electric field, and magnetic field, respectively.!

Due to the time-reversible nature of microscopic processes, the transport
coefficients are not entirely independent. The Onsager relations can be used

' To illustrate the concept, while keeping the formalism simple, a one-dimensional
flow was assumed for the first four items; in the definition of the Hall coefficient
the current density, electric field, and magnetic field point in the z, y, and 2
directions of a Cartesian coordinate system, respectively.
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to calculate some coefficients if some others are known. The most commonly
used relation connects electric and heat transports; it can be best formulated
in terms of the L,, generalized transport coefficients.? In zero magnetic field
we have

Je = LuE-—L YTE Electric current,
vT
jo = LaE —La a Thermal current. (I.7.1)

The Onsager relation turns out to be a symmetry condition on the L,, coef-
ficients:
L2y = Lio (L.7.2)

Using the definition of the transport coefficients, along with Egs. 1.7.1 and
1.7.2, straightforward calculations result in

o = Lyu
12, 1
= — 22 — 1.7.3
K ( L11+L22)T ( 7 )
II = Lyy/Ly
Ly
§ TLyy

For simplicity, we assumed that the system is isotropic, and we replaced the
L tensors by L scalars.

In a multicomponent system, or in the presence of a magnetic field, many
other transport coefficients can be defined. Here we will discuss only the Hall
effect. If a magnetic field H points in the z direction of a Cartesian coordinate
system, and the electric current is constrained to be in the zy plane, then for
an isotropic sample with no temperature gradient, the relationship between
the electric field and the electric current is

E; = pj: — HRujy
E‘.ll = HRsz + Pjy ) (174)

where 7 is the electric current, and p is the resistivity.
Inverting Eq. 1.7.4 yields

. () 0’2RHH
Jz = 2 T 5 Y
(0RuH)® +1 (cRuH)” +1
. 2RuH
j, = ——HZ2 g 4 2 E, . (1.7.5)

(cRyH)? +1 (cRgH)* +1

In this context the tensor in the equation E = p(H)j is called the Hall resis-
tivity tensor and 6 = p~! is the Hall conductivity tensor. The antisymmetric

2 For each p,g =1, 2, Ly, is a tensor having components L:,’;I, where 1,j = =, ¥, 2.
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character of p(H) can be derived from the appropriate Onsager relation by
taking into account that time-reversal transformations switch the direction of
the magnetic field. Similarly, one can show that the first nonvanishing term
in the magnetic field dependence of the diagonal element is second-order in
H:

p(H) = po+ /i H? + B H(5 - H)/|]| . (1.7.6)

The coefficients 8, and B2 characterize the magnetoresistance — that is, the
change in resistivity due to the application of magnetic field. Eq. 1.7.6 illus-
trates that the transverse magnetoresistance (measured with the magnetic
field perpendicular to the current) and the longitudinal magnetoresistance
(in magnetic field parallel to the current) may be different.

Many more transport coefficients can be defined in a finite temperature
gradient and a magnetic field. For example, there is a nonzero coefficient
relating the the generation of a temperature gradient in the y-direction by a
current flow in the y-direction (the Ettingshausen effect). For a more general
discussion of thermomagnetic effects see Callen [10] pp. 305-307, or Ziman
[14] pp. 495-501.

In crystalline materials, the transport coefficients are often anisotropic
even if H = 0. For simplicity, let us consider the the isothermal electric con-
ductivity. Since the electric field and current are vectors, the most general
linear relation between them is described by a tensor: 3 = 6FE or F = j3,
where ¢ and p are the conductivity and resistivity tensors, respectively. The
number of independent components of the tensors are constrained by the re-
quirement that the physical properties must not change when the crystal is
subjected to a symmetry operation. Furthermore, the Onsager relation en-
sures that the conductivity tensor is symmetric.® The & tensor is also positive
definite, so that the power dissipation, P = jE, is always positive.

The Drude model is a widely used, phenomenological approach en route
towards a true microscopic theory of transport: The particles are character-
ized by a single effective mass m, the interactions are represented by a single
relaxation time 7, and the underlying picture is that of a classical ideal gas.
In the Drude model of the electronic transport, the conductivity and the Hall
coefficients are?

ne’r 1,

o = - = ge ng2,r (17.7)
1

- 1.7.8

Ry — (1.7.8)

where n is the number density of the electrons, and the negative sign is due to
the electrons’ negative charge. [In Eq. I.7.7 we also expressed the conductivity

3 As Eq. 1.7.4 suggests, this is true only if the magnetic field is zero. Anisotropic
materials in a magnetic field are discussed by Landau and Lifshitz [9] Vol. 8, pp.
87-91.

* For further details, see Ashcroft and Mermin [1] p. 1.
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in terms of the density of states at the Fermi level, g( Er), and Fermi velocity,
vF, using the free-electron values in terms of n and m.] These expressions work
surprisingly well for metals and (with clever choices of n and the charge) for
semiconductors. Similarly, the Drude result for the thermal conductivity of
metals,

=== L.7.
Ke = 5— Ta (I.7.9)

is close to reality (only when written in terms of the electrical conduct1v1ty,
as above). For phonons a similar model yields
1 5 1
Kph = —CU°T = —cvl 1.7.10
ph 3 T 3 ’ ( )
where c is the specific heat, v is a typical phonon velocity, and the mean free
path £ is defined as £ = vr.

To obtain estimates of the thermoelectric power, it is often useful to think
ofit as S = II/T = jg/jeT. Under the influence of an electric field or a
temperature gradient the particles transporting heat and charge start to move
with some drift velocity v4. A crude estimate of the heat current is obtained
by taking jo = AQuqs = n([ cdT)vg; for the electric current, j. = wgne.
These yield S = ([ ¢dT)/(Te). For free-electrons we then obtain

2

7w kg kgT

S~ ——— (metals I.7.11

4 e EF ( € ) ) ( )
again in reasonable agreement with experiment. In a disordered electronic
conductor, exhibiting hopping conductivity, the electrons carry a constant
entropy of the order of In2; the electronic specific heat is independent of
temperature, and the thermopower

S=x~In2kg/e=60mV/K (hopping conductors) (I1.7.12)

is also independent of temperature. In semiconductors, the electrons must be
excited across the energy gap E,; and the corresponding energy quanta are
dissipated in the form of heat. Consequently the heat current is jo = Egnvg
and the thermopower becomes®

S =~ (ks/e)(E,/ksT) (semiconductors) . (1.7.13)

The true microscopic theory of transport properties is based on the Boltz-
mann equation. The underlying assumption of the Boltzmann equation is that
large portions of the system can still be described by a distribution function
similar to the equilibrium distribution function f(E(k)) = f(k), as discussed
in Egs. 1.6.21 - 1.6.23. But to account for the inhomogeneities created by the
external perturbation, the distribution function is made position-dependent.
(For an introductory discussion see Ashcroft and Mermin [1] pp. 316-320,

® These types of arguments are used extensively by Mott [15] and by Ziman [3].
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Ziman [3] pp. 211-213, Ibach and Liith [4] pp. 168-170, or Harrison [5] pp.
253-255. For a more detailed survey, see Ref. [14].) In its most general (and
least useful) form the Boltzmann transport equation summarizes the balance
between the various ways the distribution function can change:

of of af
a2l tarl ta

field Ot g OF

where the terms correspond to field induced motion, diffusion, and scatter-
ing (or collisions) of particles. For electrons the first term is related to the
externally applied electric and magnetic fields, the diffusion term is due to
the free propagation of the particles in a perfectly periodic crystal field, and
the collision term describes the interaction of electrons with lattice imperfec-
tions (impurities, dislocations, lattice vibrations) and with other electrons.
For phonons the first term is usually zero.

The linearized Boltzmann equation is obtained if we assume that f is close
to the equilibrium distribution function f® and the difference, 6 f = f — f°,
is small. The first two terms in Eq. 1.7.14 can be treated by appropriate ex-
pansion of the f° function, as discussed by several textbooks. The scattering
term represents the greatest challenge. To obtain the total change in f, one
has to consider all processes taking away from and adding to the particle
number for state |k). If the transition probability from state |k) to state |k’)
is denoted by Wi, then one obtains

=0. (1.7.14)

scatt

af dk’

- —_— Jf (k) — F(ED)] . I.7.1

5l = [ Gl - 1) (17.15)
The principle of microscopic reversibility, Wiy = Wik, was used.® How-

ever, even with that simplification Eq. 1.7.15 turns Eq. 1.7.14 into an integro-
differential equation which is hard to solve. Most often the relazation time
approximation is used:

of  ___1
ot (k)

Some of the complex wavenumber dependence of Wi may be condensed
into a wavenumber-dependent relaxation time, 7(k); sometimes this is further
simplified to 7 = 7(FE) or to a single relaxation time 7. For example, when
the scattering is isotropic and elastic, the relaxation time can be calculated
(by comparing Egs. 1.7.16 and 1.7.15):

5f(k) . (L.7.16)

scatt

;—(}ic_) = / (;1:)’3 Wik (1 — cosO) , (1.7.17)

% The scattering of a single particle by an impurity is often calculated by using
the Golden Rule, Wy = 27/hé(E(k) — E(k'))|(k|U|k’)|?, where U is the per-
turbation potential. As the Dirac  function indicates, this scattering is elastic.
The condition for microscopic reversibility is also satisfied. For a discussion of
the Golden Rule, see Landau and Lifshitz [9] Vol. 3.
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where O is the angle between k and k'.
To complete the microscopic description of the transport properties, we
have to define how currents are calculated from the distribution function:

In = / (2d’; k)v(k) Particle current

PR
: (2m)3

JE = / -(—%f(k)E(k)v(k) Energy current

Jv(k) Electric current  (1.7.18)

jo = / (2‘“)‘ f(k)(E(k) — wyo(k)  Heat current.
For the last equation we used AQ = TdS = F — udN from Eq. 1.6.1. The
integrations are over the first Brillouin zone. Except for the electric current
and the difference in the distribution functions, similar equations work for
phonons and other quasiparticles as well. Due to the f°(k) = f°(—k) sym-
metry of the Fermi function,” we may use 6f = f — f° in Eqgs. 1.7.18. By
substituting the solution of the Boltzmann equation into the above currents,
the transport coefficients can be evaluated. For example, the conductivity
tensor is

dk (—-of°
Oij = e? / 3 ( 5E )'rvi(k)vj(k) . (1.7.19)
In general, the thermoelectric transport coefficients defined in Eq. I.7.1 are
dk [ -0f°
2 —
e /47r3 ( 3E )'r v(k) ov(k)

0
Lig = Loy = -—Te/ e ( aal'?f )'r v(k) ov;(k)(E(k) — 1)

L1a

_a¢0
Ly = T / %( :bf )'r (k) ov;(k)(E(k) —pw)? .  (L7.20)

Here we used the “dyadic product” (v owv);; = v;v; to define each component
of the L tensors.® Note that the Onsager relation (Eq. 1.7.2) is automatically
satisfied. The integrals can be evaluated in terms of the Bethe-Sommerfeld
expansion (Egs. 1.6.30 and 1.6.31). Keeping the first nonvanishing terms re-
sults in

’ This symmetry relies on the time-reversal symmetry of the Schr6dinger equation,
which leads to E(k) = E(—k). In most cases the unperturbed system is in thermal
equlllbrlum (described by the equilibrium distribution function of the quasiparti-
cles, %) and does not carry any current. Notable exceptions are superconductors
and superfluids.

8 For isotropic systems, the L tensors are described by a diagonal matrlx w1th the
diagonal components L, = L v = = L,.. In this case the identity v* = v2 +'uy +v2

allows us to replace v o v by 3v and the L tensors may be replaced by scalars.
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L11 = 0= e%"/%é(E(k) — EF)‘U(k) ov(k)

2 2
_ T 2017 o g2 [ 9B _g) 2L
he = g (WD ggo+e 7/47r36(E(k) Er) pkor

2
Lz = %—c;(kBT)z& . (1.7.21)

Here we have allowed for an energy-dependent relaxation time. In this approx-
imation (which is well-justified for the degenerate Fermi gas, with T¢ > T')
the thermal conductivity in Eq. 1.7.3 reduces to kK = Loz, and it satisfies
the Wiedemann—Franz law: k = aT o, where the constant of proportionality
is & = (72/3)(ks/e)?. The thermoelectric power is S = —E;(kB/e)kBT/EO,
where E° depends on the band structure and can be evaluated from Eq.
1.7.21. E® =~ EF is a good estimate. For free electrons these results justify the
Drude results, Egs. 1.7.7-1.7.9, and the simple estimate for the thermopower,
Eq. I.7.11. However, the agreement is in part due to the fact that we did not
solve the “real” Boltzmann equation after all; instead we used the relaxation
time approximation.

The electrical resistivity of metals has an important contribution due
to electron—phonon scattering. A simple estimate yields a relaxation rate
proportional to the number of phonons Np,. At high temperatures N, varies
linearly with temperature (see Problem 6.2), leading to the observed linear
temperature dependence of the resistance. A more sophisticated calculation
takes into account the directional dependence (Eq. 1.7.17) and the inelastic
nature of the scattering. The result is the Bloch—Griineisen formula:

T/6p 5
~ L / 2dz (L7.22)
Ob Jo (e =1)(1 —e%)

where ©@p is the Debye temperature. This function is tabulated in Landolt—
Bornstein [21] Vol. 15, p. 287.

If the relaxation time 7 is independent of the electron wavenumber the
solution of the Boltzmann transport equation gives an electrical conductivity

tensor
1 e2r/vivdeF
3 h ol

v; is the ith component of the Fermi velocity, and |v| is the absolute value of
v. The integration is over the Fermi surface.

The Hall effect and the magnetoresistance can be treated similarly. The
solution of the Boltzmann equation is searched for in terms of a power series
of the operator (er/kic)[v x H] 8/0k. Here we reproduce the result for a
two-dimensional electronic system. It is assumed that the electronic energy
has no dispersion in the direction of the applied magnetic field, which points

ois = (1.7.23)
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in the z-direction.?

2¢3 [ dk [-0f° 0 3}
0oy = % /4“-3 ( 35 ) vyT(k) {vy Bk, _Uzaky} ve7(k) . (1.7.24)

Note that the momentum-dependence of the relaxation rate is retained here,

7.1 Problem: Temperature Dependent Resistance

Resistors made of pure Pt metal are often used to measure temperature
down to about 20 K (below that temperature the sensitivity dramatically
decreases). In Table 1.7.1 we reproduced the calibration points for a stan-
dard, “100 2” Pt resistor. Show that the Bloch—Griineisen formula gives
a satisfactory fit to these data for temperatures below 350 K. (The Debye
temperature of Pt is 230 K. The Bloch—Griineisen function, Eq. 1.7.22, is
tabulated in Landolt-Bérnstein [21] Vol. 15, p. 287. It can also be calculated.
by numerical integration.)

T(Kj R(ﬂ) T(K) R(.Q) Table 1.7.1. Calibration data for a typica.l

140 1797 | 1000 29.087 | 100 §2” Pt resistor.
300 2.147 | 1500 50815
300  3.508 | 2000 71073
400 5038 | 3000 110.45
50.0 0.228 | 400.0  148.62
70.0 17.128 | 10000 353.402

7.2 Problem: Conductivity Tensor

Prove that for a tetragonal crystal the conductivity is isotropic in the plane
perpendicular to the ¢ axis. (Note how powerful a statement this is. For
example, in an electrical conductivity measurement one obtains the same
value if the current flows along the CuO bonds of Figure 1.1.6 or if it flows
in a direction 45° to them.)

® The more general result, and details of the derivation, can be found in Ziman
(14] pp. 501-504. The two-dimensional formula is quoted by Ong [22], who also

provides a transparent geometrical representation of the magnetotransport in
two-dimensional systems.



