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To obtain the final expression for A in second quantization we simply express Ak,λ in
terms of Pk,λ and Qk,λ, which in turn is expressed in terms of a†

k,λ and ak,λ:
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(1.88)
Substituting this into the expansion Eq. (1.82) our final result is:
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1.4.3 Operators for kinetic energy, spin, density, and current

In the following we establish the second quantization representation of the four important
single-particle operators associated with kinetic energy, spin, particle density, and particle
current density.

First, we study the kinetic energy operator T , which is independent of spin and hence
diagonal in the spin indices. In first quantization it has the representations
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r δσ�,σ, real space representation, (1.90a)
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δk�,k δσ�,σ, momentum representation. (1.90b)

Its second quantized forms with spin indices follow directly from Eqs. (1.63) and (1.73)
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The second equality can also be proven directly by inserting Ψ†(r) and Ψ(r) from Eq. (1.74).
For particles with charge q a magnetic field can be included in the expression for the ki-
netic energy by substituting the canonical momentum p with the kinetic momentum4

p− qA,
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Next, we treat the spin operator s for electrons. In first quantization it is given by
the Pauli matrices
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4In analytical mechanics A enters through the Lagrangian: L = 1
2
mv2

− V + qv ·A, since this by the
Euler-Lagrange equations yields the Lorentz force. But then p = ∂L/∂v = mv + qA, and via a Legendre
transform we get H(r,p) = p ·v − L(r,v) = 1

2
mv2 + V = 1
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(p − qA)2 + V . Considering infinitesimal

variations δA we get δH = H(A + δA)−H(A) = −qv·δA = −q
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dr J·δA, an expression used to find J.
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To obtain the second quantized operator we pull out the spin index explicitly in the basis
kets, |ν� = |µ�|σ�, and obtain with fermion operators the following vector expression,
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with components
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We then turn to the particle density operator ρ(r). In first quantization the fundamen-

tal interpretation of the wave function ψµ,σ(r) gives us ρµ,σ(r) = |ψµ,σ(r)|2 which can also
be written as ρµ,σ(r) =

�
dr� ψ∗

µ,σ(r�)δ(r� − r)ψµ,σ(r�), and thus the density operator for
spin σ is given by ρσ(r) = δ(r�− r). In second quantization this combined with Eq. (1.63)
yields
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From Eq. (1.75) the momentum representation of this is found to be
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where the momentum transfer q = k� − k has been introduced.

The fourth and last operator to be treated is the particle current density operator
J(r). It is related to the particle density operator ρ(r) through the continuity equation
∂tρ +∇·J = 0. This relationship can be used to actually define J. However, we shall take
a more general approach based on analytical mechanics, see Eq. (1.92) and the associated
footnote. This allows us in a simple way to take the magnetic field, given by the vector
potential A, into account. By analytical mechanics it is found that variations δH in the
Hamiltonian function due to variations δA in the vector potential is given by

δH = −q

�
dr J·δA (1.97)

We use this expression with H given by the kinetic energy Eq. (1.92). Variations due to
a varying parameter are calculated as derivatives if the parameter appears as a simple
factor. But expanding the square in Eq. (1.92) and writing only the A dependent terms of
the integrand, −Ψ†
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The variations of Eq. (1.97) can in Eq. (1.98) be performed as derivatives and J is imme-
diately read off as the prefactor to δA. The two terms in the current density operator are
denoted the paramagnetic and the diamagnetic term, J∇ and JA, respectively:

Jσ(r) = J∇σ (r) + JA
σ (r), (1.99a)
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diamagnetic : JA
σ (r) = − q
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The momentum representation of J is found in complete analogy with that of ρ
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The expression for J in an arbitrary basis is treated in Exercise 1.2.

1.4.4 The Coulomb interaction in second quantization

The Coulomb interaction operator V is a two-particle operator not involving spin and
thus diagonal in the spin indices of the particles. Using the same reasoning that led from
Eq. (1.63) to Eq. (1.73) we can go directly from Eq. (1.64) to the following quantum field
operator form of V :
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Here we have introduced the abbreviation e2
0 = e2/4π�0.We can also write the Coulomb

interaction directly in the momentum basis by using Eq. (1.31) and Eq. (1.64) with
|ν� = |k,σ� and ψk,σ(r) = 1√

V
eik·rχσ. We can interpret the Coulomb matrix element

as describing a transition from an initial state |k1σ1,k2σ2� to a final state |k3σ1,k4σ2�
without flipping any spin, and we obtain
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Since r2 − r1 is the relevant variable for the interaction, the exponential is rewritten as


