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1. Introduction 

1. PREFACE 

In recent years semiconductor nanostructures have become the model 
systems of choice for investigations of electrical conduction on short length 
scales. This development was made possible by the availability of semicon- 
ducting materials of unprecedented purity and crystalline perfection. Such 
materials can be structured to contain a thin layer of highly mobile electrons. 
Motion perpendicular to the layer is quantized, so that the electrons are 
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constrained to move in a plane. As a model system, this two-dimensional 
electron gas (2DEG) combines a number of desirable properties, not shared by 
thin metal films. It has a low electron density, which may be readily varied by 
means of an electric field (because of the large screening length). The low 
density implies a large Fermi wavelength (typically 40 nm), comparable to the 
dimensions of the smallest structures (nanostructures) that can be fabricated 
today. The electron mean free path can be quite large (exceeding 10pm). 
Finally, the reduced dimensionality of the motion and the circular Fermi 
surface form simplifying factors. 

Quantum transport is conveniently studied in a 2DEG because of the 
combination of a large Fermi wavelength and large mean free path. The 
quantum mechanical phase coherence characteristic of a microscopic object 
can be maintained at low temperatures (below 1 K) over distances of several 
microns, which one would otherwise have classified as macroscopic. The 
physics of these systems has been referred to as mesoscopic,’ a word borrowed 
from statistical mechanics.’ Elastic impurity scattering does not destroy 
phase coherence, which is why the effects of quantum interference can modify 
the conductivity of a disordered conductor. This is the regime of diffusive 
transport, characteristic for disordered metals. Quantum interference 
becomes more important as the dimensionality of the conductor is reduced. 
Quasi-one dimensionality can readily be achieved in a 2DEG by lateral 
confinement. 

Semiconductor nanostructures are unique in offering the possibility of 
studying quantum transport in an artificial potential landscape. This is the 
regime of ballistic transport, in which scattering with impurities can be 
neglected. The transport properties can then be tailored by varying the 
geometry of the conductor, in much the same way as one would tailor the 
transmission properties of a waveguide. The physics of this transport regime 
could be called electron optics in the solid state.3 The formal relation between 
conduction and transmission, known as the Landauer f ~ r m u l a , ’ ~ ~ . ~  has 
demonstrated its real power in this context. For example, the quantization of 
the conductance of a quantum point contact6*’ (a short and narrow 

‘Y. Imry, in “Directions in Condensed Matter Physics,” Vol. 1 (G. Grinstein and G. Mazenko, 

’N. G. van Kampen, “Stochastic Processes in Physics and Chemistry.” North-Holland, 

3H. van Houten and C. W. J. Beenakker, in “Analogies in Optics and Microelectronics” (W. 

4R. Landauer, IBM J .  Res. Den  1, 223 (1957); 32, 306 (1988). 
’M. Biittiker, Phys. Reo. Lett. 57, 1761 (1986). 
6B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. 

’D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. 

eds.). World Scientific, Singapore, 1986. 

Amsterdam, 1981. 

van Haeringen and D. Lenstra, eds.). Kluwer Academic, Dordrecht, 1990. 

van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988). 

Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J .  Phys. C 21, L209 (1988). 
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constriction in the 2DEG) can be understood using the Landauer formula as 
resulting from the discreteness of the number of propagating modes in a 
waveguide. 

Two-dimensional systems in a perpendicular magnetic field have the 
remarkable property of a quantized Hall resistance,* which results from the 
quantization of the energy in a series of Landau levels. The magnetic length 
(h/eB)’’’ ( z  10 nm at B = 5 T) assumes the role of the wavelength in the 
quantum Hall effect. The potential landscape in a 2DEG can be adjusted to 
be smooth on the scale of the magnetic length, so that inter-Landau level 
scattering is suppressed. One then enters the regime of adiabatic transport. In 
this regime truly macroscopic behavior may not be found even in samples as 
large as 0.25mm. 

In this review we present a self-contained account of these three novel 
transport regimes in semiconductor nanostructures. The experimental and 
theoretical developments in this field have developed hand in hand, a fruitful 
balance that we have tried to maintain here as well. We have opted for the 
simplest possible theoretical explanations, avoiding the powerful-but more 
formal-Green’s function techniques. If in some instances this choice has not 
enabled us to do full justice to a subject, then we hope that this disadvantage 
is compensated by a gain in accessibility. Lack of space and time has caused 
us to limit the scope of this review to metallic transport in the plane of a 
2DEG at small currents and voltages. Transport in the regime of strong 
localization is excluded, as well as that in the regime of a nonlinear current- 
voltage dependence. Overviews of these, and other, topics not covered here 
may be found in Refs. 9- 11, as well as in recent conference proceedings.’*-” 

We have attempted to give a comprehensive list of references to theoretical 

‘K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980). 
9M. A. Reed, ed., “Nanostructured Systems.” Academic Press, New York, to be published. 

lop. A. Lee, R. A. Webb and B. L. Al’tshuler, eds., “Mesoscopic Phenomena in Solids.” Elsevier, 

“B. L. Al’tshuler, R. A. Webb, and R. B. Laibowitz, eds., IBM J .  Res. Deo. 32,304-437,439-579 

‘“‘Proceedings of the International Conference on Electronic Properties of Two-Dimensional 

13M. J. Kelly and C. Weisbuch, eds., “The Physics and Fabrication of Microstructures and 

I4H. Heinrich, G. Bauer, and F. Kuchar, eds., “Physics and Technology of Submicron 

”M. Reed and W. P. Kirk, eds., “Nanostructure Physics and Fabrication.” Academic Press, 

I6S. P. Beaumont and C. M. Sotomayor-Torres, eds., “Science and Engineering of 1- and 0- 

”5. M. Chamberlain, L. Eaves, and J. C. Portal, eds., “Electronic Properties of Multilayers and 

Amsterdam, to be published. 

(1988). 

Systems,” IV-VIII, Sure Sci. 113 (1982); 142 (1984); 170 (1986); 1% (1988); 229 (1990). 

Microdevices.” Proc. Winter School Les Houches, 1986, Springer, Berlin, 1986. 

Structures.” Springer, Berlin, 1988. 

New York, 1989. 

Dimensional Semiconductors.” Plenum, London, 1990. 

Low-Dimensional Semiconductor Structures.” Plenum, London, to be published. 
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and experimental work on the subjects of this review. We apologize to those 
whose contributions we have overlooked. Certain experiments are discussed 
in some detail. In selecting these experiments, our aim has been to choose 
those that illustrate a particular phenomenon in the clearest fashion, not to 
establish priorities. We thank the authors and publishers for their kind 
permission to reproduce figures from the original publications. Much of the 
work reviewed here was a joint effort with colleagues at  the Delft University 
of Technology and at the Philips Research Laboratories, and we are grateful 
for the stimulating collaboration. 

The study of quantum transport in semiconductor nanostructures is 
motivated by more than scientific interest. The fabrication of nanostructures 
relies on sophisticated crystal growth and lithographic techniques that exist 
because of the industrial effort toward the miniaturization of transistors. 
Conventional transistors operate in the regime of classical diffusive transport, 
which breaks down on short length scales. The discovery of novel transport 
regimes in semiconductor nanostructures provides options for the develop- 
ment of innovative future devices. At this point, most of the proposals in the 
literature for a quantum interference device have been presented primarily as 
interesting possibilities, and they have not yet been critically analyzed. A 
quantitative comparison with conventional transistors will be needed, taking 
circuit design and technological considerations into account. l 8  Some pro- 
posals are very ambitious, in that they do not only consider a different 
principle of operation for a single transistor, but envision entire computer 
architectures in which arrays of quantum devices operate phase coherently. l 9  

We hope that the present review will convey some of the excitement that 
the workers in this rewarding field of research have experienced in its 
exploration. May the description of the variety of phenomena known at 
present, and of the simplest way in which they can be understood, form an 
inspiration for future investigations. 

2. NANOSTRUCTURES IN Si INVERSION LAYERS 

Electronic properties of the two-dimensional electron gas in Si MOSFETs 
(metal-oxide-semiconductor field-effect transistors) have been reviewed by 
Ando, Fowler, and Stern,20 while general technological and device aspects 
are covered in detail in the books by Sze2’ and by Nicollian and Brew.22 In 
this section we only summarize those properties that are needed in the 

“R. Landauer, Phys. Today 42, 119 (1989). 
19R. T. Bate, Sci. Am. 258, 78 (1988). 
”T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys.  54,437 (1982). 
” S .  M. Sze, “Physics of Semiconductor Devices.” Wiley, New York, 1981. 
”E. H. Nicollian and J. R. Brew, “Metal Oxide Semiconductor Technology.” Wiley, New York, 

1982. 
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FIG. 1. Band-bending diagram (showing conduction band E,, valence band Ev, and Fermi 
level EF) of a metal-oxide-semiconductor (MOS) structure. A 2DEG is formed at the interface 
between the oxide and the p-type silicon substrate, as a consequence of the positive voltage V, on 
the metal gate electrode. 

following. A typical device consists of a p-type Si substrate, covered by a SiO, 
layer that serves as an insulator between the (100) Si surface and a metallic 
gate electrode. By application of a sufficiently strong positive voltage V,  on 
the gate, a 2DEG is induced electrostatically in the p-type Si under the gate. 
The band bending leading to the formation of this inversion layer is 
schematically indicated in Fig. 1. The areal electron concentration (or sheet 
density) n, follows from en, = Cnx(V, - v), where is the threshold voltage 
beyond which the inversion layer is created, and Cox is the capacitance per 
unit area of the gate electrode with respect to the electron gas. Approximate- 
ly, one has Cox = EOx/d,, (with E,, = 3.98, the dielectric constant of the SiO, 
layer),” so 

Enx n, = ~ (v, - C). 
edox 

The linear dependence of the sheet density on the applied gate voltage is one 
of the most useful properties of Si inversion layers. 

The electric field across the oxide layer resulting from the applied gate 
voltage can be quite strong. Typically, V ,  - r/; = 5 V and do, = 50 nm, so the 
field strength is of order 1 MV/cm, at best a factor of 10 lower than typical 
fields for the dielectric breakdown of SiO,. It is possible to change the electric 
field at the interface, without altering n,, by applying an additional voltage 
across the p-n  junction that isolates the inversion layer from the p-type 
substrate (such a voltage is referred to as a substrate bias). At the Si-SiO, 
interface the electric field is continuous, but there is an electrostatic potential 
step of about 3 eV. An approximately triangular potential well is thus formed 
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at the interface (see Fig. 1). The actual shape of the potential deviates 
somewhat from the triangular one due to the electronic charge in the 
inversion layer, and has to be calculated self-consistently.20 Due to the 
confinement in one direction in this potential well, the three-dimensional 
conduction band splits into a series of two-dimensional subbands. Under 
typical conditions (for a sheet electron density II, = 1011-1012cm-2) only a 
single two-dimensional subband is occupied. Bulk Si has an indirect band 
gap, with six equivalent conduction band valleys in the (100) direction in 
reciprocal space. In inversion layers on the (100) Si surface, the degeneracy 
between these valleys is partially lifted. A twofold valley degeneracy remains. 
In the following, we treat these two valleys as completely independent, 
ignoring complications due to intervalley scattering. For each valley, the 
(one-dimensional) Fermi surface is simply a circle, corresponding to free 
motion in a plane with effective electron massZo rn = 0.19me. For easy 
reference, this and other relevant numbers are listed in Table I. 

The electronic properties of the Si inversion layer can be studied by 
capacitive or spectroscopic techniques (which are outside the scope of this 
review), as well as by transport measurements in the plane of the 2DEG. To 
determine the intrinsic transport properties of the 2DEG (e.g., the electron 
mobility), one defines a wide channel by fabricating a gate electrode with the 
appropriate shape. Ohmic contacts to the channel are then made by ion 
implantation, followed by a lateral diffusion and annealing process. The two 
current-carrying contacts are referred to as the source and the drain. One of 
these also serves as zero reference for the gate voltage. Additional side 
contacts to the channel are often fabricated as well (for example, in the Hall 
bar geometry), to serve as voltage probes for measurements of the longi- 
tudinal and Hall resistance. Insulation is automatically provided by the p-n 
junctions surrounding the inversion layer. (Moreover, at the low temper- 
atures of interest here, the substrate conduction vanishes anyway due to 
carrier freeze-out.) The electron mobility ,ue is an important figure of merit for 
the quality of the device. At low temperatures the mobility in a given sample 
varies nonmonotonically2' with increasing electron density n, (or increasing 
gate voltage), due to the opposite effects of enhanced screening (which reduces 
ionized impurity scattering) and enhanced confinement (which leads to an 
increase in surface roughness scattering at the Si-SiO, interface). The 
maximum low-temperature mobility of electrons in high-quality samples is 
around i04 cm2/V-s. This review deals with the modifications of the transport 
properties of the 2DEG in narrow geometries. Several lateral confinement 
schemes have been tried in order to achieve narrow inversion layer channels 
(see Fig. 2). Many more have been proposed, but here we discuss only those 
realized experimentally. 

Technically simplest, because it does not require electron beam lit- 
hography, is an approach first used by Fowler et al., following a suggestion by 



TABLE I. ELECTRONIC PROPERTIES OF THE 2DEG IN GaAs-AIGaAs HETEROSTRUCTURE~ AND si 
INVERSION LAYERS 

GaAs(100) Si (100) UNITS 

Effective Mass 
Spin Degeneracy 
Valley Degeneracy 
Dielectric Constant 

rn 
R 
9" 
& 

0.067 
2 
1 

13.1 

Density of States 
Electronic Sheet 

Densitya 
Fermi Wave Vector 
Fermi Velocity 
Fermi Energy 
Electron MobilityP 
Scattering Time 
Diffusion Constant 
Resistivity 
Fermi Wavelength 
Mean Free Path 
Phase Coherence 

Thermal Length 
Cyclotron Radius 
Magnetic Length 

Lengthb 

p(E) = g,g,(rn/2nh2) 0.28 

4 
1.58 
2.7 

14 
104-106 
0.38-38 
140-14000 
1.6-0.016 
40 
102-104 

14=(Ds4)"2 200-... 

1,,,1= hk&B 100 

%T 1-100 
EF/hwc 7.9 

lT=(hD/kBT)'i2 330-3300 

I, =(h/eB)'/' 26 
kFl 15.8- 1580 

0.19 
2 
2 
11.9 

1.59 

1-10 
0.56-1.77 
0.34-1.1 
0.63-6.3 

1.1 
6.4-64 
6.3-0.63 
112-35 
37-118 

104 

40-400 
70-220 
37-116 
26 
2.1-21 
1 
1-10 

rn,=9.1 x 10-28g 

nm(T/K)- ' I 2  

nm(TjK)- ' I 2  

nm(B/T)- ' 
nm(BIT)-''' 

"A typical (fixed) density value is taken for GaAs-AIGaAs heterostructures, and a typical range 
of values in the metallic conduction regime for Si MOSFETs. For the mobility, a range of 
representative values is listed for GaAs-AIGaAs heterostructures, and a typical "good" value for 
Si MOSFETs. The variation in the other quantities reflects that in n, and pe. 
bRough estimate of the phase coherence length, based on weak localization experiments in 
laterally confined heterostru~tures~~-~ '  and Si M O S F E T S . ~ * . ~ ~  The stated T-'" temperature 
dependence should be regarded as an indication only, since a simple power law dependence is not 
always found (see., for example, Refs. 30 and 25). For high-mobility GaAs-AIGaAs hetero- 
structures the phase coherence length is not known, but is presumably3' comparable to the 
(elastic) mean free path 1. 

23B. J. F. Lin, M. A. Paalanen, A. C. Gossard, and D. C. Tsui, Phys. Rev. B 29, 927 (1984). 
24H. Z. Zheng, H. P. Wei, D. C. Tsui, and G. Weimann, Phys. Rev. B 34, 5635 (1986). 
25K. K. Choi, D. C. Tsui, and K. Alavi, Phys. Reo. B 36, 7751 (1987); Appl. Phys. Lett. 50, 110 

(1987). 
26H. van Houten, C. W. J. Beenakker, B. J. van Wees, and J. E. Mooij, Surt Sci. 196,144 (1988). 
"H. van Houten, C. W. J. Beenakker, M. E. I. Broekaart, M. G. J. Heijman, B. J. van Wees, J. E. 

'*D. J. Bishop, R. C. Dynes, and D. C. Tsui, Phys. Rev. B 26, 773 (1982). 
29W. J. Skocpol, L. D. Jackel, E. L. Hu, R. E. Howard, and L. A. Fetter, Phys. Rev. Lett. 49,951 

30K. K. Choi, Phys. Rev. B 28, 5774 (1983). 
31H. van Houten, B. J. van Wees, and C. W. J. Beenakker, in Ref. 14. 

Mooij, and J. P. Andre, Acta Electronica, 28, 27 (1988). 

(1982). 
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a 
+ + + + + +  It + + + + + $1 gate 

SiOp 
( p-Si ) ( p-Si ) 

++*++ 
b 

m g a t e  
SiOs 

n-Si p-Si 

p-Si p-Si 

FIG. 2. Schematic cross-sectional views of the lateral pinch-off technique used to define a 
narrow electron accumulation layer (a), and of three different methods to define a narrow 
inversion layer in Si MOSFETs (b-d). Positive (+) and negative (-) charges on the gate 
electrodes are indicated. The location of the 2DEG is shown in black. 

Pepper 32-34 (Fig. 2a). By adjusting the negative voltage over p-n junctions 
on either side of a relatively wide gate, they were able to vary the electron 
channel width as well as its electron density. This technique has been used to 
define narrow accumulation layers on n-type Si substrates, rather than 
inversion layers. Specifically, it has been used for the exploration of quantum 
transport in the strongly localized regime32*35-37 (which is not discussed in 
this review). Perhaps the technique is particularly suited to this highly 
resistive regime, since a tail of the diffusion profile inevitably extends into the 
channel, providing additional scattering centers.34 Some studies in the weak 
localization regime have also been reported.33 

The conceptually simplest approach (Fig. 2b) to define a narrow channel is 
to scale down the width of the gate by means of electron beam l i t h ~ g r a p h y ~ ~  

3ZA. B. Fowler, A. Hartstein, and R. A. Webb, Phys. Reu. Lett. 48, 196 (1982). 
33M. Pepper and M. J. Uren, J. Phys. C 15, L617 (1982). 
34C. C. Dean and M. Pepper, J .  Phys. C 15, L1287 (1982). 
35A. B. Fowler, J. J. Wainer, and R. A. Webb, IBM J. Res. Deu. 32, 372 (1988). 
36S. B. Kaplan and A. C. Warren, Phys. Rev. B 34, 1346 (1986). 
37S. B. Kaplan and A. Hartstein, 1BM J. Res. Deu. 32, 347 (1988); Phys. Rev. Lett. 56,2403 (1986). 
"R. G. Wheeler, K. K. Choi, A. Goel, R. Wisnieff, and D. E. Prober, Phys. Rev. Lett. 49, 1674 

(1982). 
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or other advanced  technique^.^'-^' A difficulty for the characterization of the 
device is that fringing fields beyond the gate induce a considerable un- 
certainty in the channel width, as well as its density. Such a problem is shared 
to some degree by all approaches, however, and this technique has been quite 
successful (as we will discuss in Section 11). For a theoretical study of the 
electrostatic confining potential induced by the narrow gate, we refer to the 
work by Laux and Stern.42 This is a complicated problem, which requires a 
self-consistent solution of the Poisson and Schrodinger equations, and must 
be solved numerically. 

The narrow gate technique has been modified by Warren et uZ.43*44 (Fig. 
2c), who covered a multiple narrow-gate structure with a second dielectric 
followed by a second gate covering the entire device. (This structure was 
specifically intended to study one-dimensional superlattice effects, which is 
why multiple narrow gates were used.) By separately varying the voltages on 
the two gates, one achieves an increased control over channel width and 
density. The electrostatics of this particular structure has been studied in Ref. 
43 in a semiclassical approximation. 

Skocpol et a1.29.45 have combined a narrow gate with a deep self-aligned 
mesa structure (Fig. 2d), fabricated using dry-etching techniques. One 
advantage of their method is that at least an upper bound on the channel 
width is known unequivocally. A disadvantage is that the deep etch exposes 
the sidewalls of the electron gas, so that it is likely that some mobility 
reduction occurs due to sidewall scattering. In addition, the deep etch may 
damage the 2DEG itself. This approach has been used successfully in the 
exploration of nonlocal quantum transport in multiprobe channels, which in 
addition to being narrow have a very small separation of the voltage 
 probe^.^^,^^ In another investigation these narrow channels have been used 
as instruments sensitive to the charging and discharging of a single electron 
trap, allowing a detailed study of the statistics of trap  kinetic^.^^-^* 

39R. F. Kwasnick, M. A. Kastner, J. Melngailis, and P. A. Lee, Phys. Rev. Lett. 52,224 (1984). 
40J. C. Licini, D. J. Bishop, M. A. Kastner, and J. Melngailis, Phys. Rev. Lett. 55, 2987 (1985). 
41P. H. Woerlee, G. A. M. Hurkx, W. J. M. J. Josquin, and J. F. C. M. Verhoeven, Appl. Phys. 

Lett. 47,700 (1985); see also H. van Houten and P. H. Woerlee, “Proc. ICPS 18,” p. 1515 (0. 
Engstrom, ed.). World Scientific, Singapore, 1987. 

42S. E. Laux and F. Stern, Appl. Phys. Lett. 49, 91 (1986). 
43A. C. Warren, D. A. Antoniadis, and H. I. Smith, Phys. Rev. Lett. 56, 1858 (1986). 
44A. C. Warren, D. A. Antoniadis, and H. I. Smith, IEEE EIectron Device Lett., EDL-7, 413 

45W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, D. M. Tennant, and A. D. 

46W. J. Skocpol, Physica Scripta T19, 95 (1987). 
47K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. 

48R. E. Howard, W. J. Skocpol, L. D. Jackel, P. M. Mankiewich, L. A. Fetter, D. M. Tennant, R. 

(1986). 

Stone, Phys. Reo. Lett. 56, 2865 (1986). 

Tennant, Phys. Rev. Lett. 52, 228 (1984). 

Epworth, and K. S. Ralls, IEEE Trans. ED-32, 1669 (1985). 
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PDEG 

A'0.3Ga0.7As GaAs 

FIG. 3. Band-bending diagram of a modulation doped GaAs-AI,Ga, -,As heterostructure. A 
2DEG is formed in the undoped GaAs at the interface with the p-type doped AIGaAs. Note the 

I Schottky barrier between the semiconductor and a metal electrode. 

3. NANOSTRUCTURES IN GaAs- AlGaAs HETEROSTRUCTURES 

In a modulati~n-doped~~ GaAs- AlGaAs heterostructure, the 2DEG is 
present at the interface between GaAs and AI,Ga, -,As layers (for a recent 
review, see Ref. 50). Typically, the A1 mole fraction x = 0.3. As shown in the 
band-bending diagram of Fig. 3, the electrons are confined to the GaAs- 
AlGaAs interface by a potential well, formed by the repulsive barrier due to 
the conduction band offset of about 0.3 V between the two semiconductors, 
and by the attractive electrostatic potential due to the positively charged 
ionized donors in the n-doped AlGaAs layer. To reduce scattering from these 
donors, the doped layer is separated from the interface by an undoped 
AlGaAs spacer layer. Two-dimensional subbands are formed as a result of 
confinement perpendicular to the interface and free motion along the 
interface. An important advantage over a MOSFET is that the present 
interface does not interrupt the crystalline periodicity. This is possible 
because GaAs and AlGaAs have almost the same lattice spacing. Because of 
the absence of boundary scattering at the interface, the electron mobility can 
be higher by many orders of magnitude (see Table I). The mobility is also high 
because of the low effective mass m = 0.067~1, in GaAs (for a review of GaAs 
material properties, see Ref. 51). As in a Si inversion layer, only a single two- 
dimensional subband (associated with the lowest discrete confinement level 
in the well) is usually populated. Since GaAs has a direct band gap, with a 

49H. L. Stormer, R. Dingle, A. C. Gossard, and W. Wiegman, "Proc. 14th ICPS," p. 6 (B. L. H. 
Wilson, ed.). Institute of Physics, London, 1978; R. Dingle, H. L. Stormer, A. C. Gossard, and 
W. Wiegman, Appl. Phys. Lett. 7, 665 (1978). 

'OJ. J. Harris, J. A. Pals, and R. Woltjer, Rep. Prog. Phys. 52, 1217 (1989). 
'IS. Adachi, J .  Appl.  Phys. 58, R1 (1985). 
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b 
.... _------ - - - - - --- -- ---- --------- gate 

_-___---  - 
.... 

. . . . . . . . . . . . . . . . . . . . . . . . . .  
AlGaAs . . . . . . . . . . . . . . . . . . . . . . . . . .  NGaAs ............... .... 

GaAs 
GaAs 

.... .... 

gate ................... ..... . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

+++++ ++++++++++n+++++++++++ AIGaAs ++++++++++++~+++++++++++++ AlGaAs ... ..... 
GaAs 

GaAs 

.... .... 
FIG. 4. Schematic cross-sectional views of four different ways to define narrow 2DEG 

channels in a GaAs-AlGaAs heterostructure. Positive ionized donors and negative charges on a 
Schottky gate electrode are indicated. The hatched squares in d represent unremoved resist used 
as a gate dielectric. 

single conduction band minimum, complications due to intervalley scattering 
(as in Si) are absent. The one-dimensional Fermi surface is a circle, for the 
commonly used (100) substrate orientation. 

Since the 2DEG is present “naturally” due to the modulation doping (i.e., 
even in the absence of a gate), the creation of a narrow channel now requires 
the selective depletion of the electron gas in spatially separated regions. In 
principle, one could imagine using a combination of an undoped hetero- 
structure and a narrow gate (similarly to a MOSFET), but in practice this 
does not work very well due to the lack of a natural oxide to serve as an 
insulator on top of the AlGaAs. The Schottky barrier between a metal and 
(A1)GaAs (see Fig. 3) is too low (only 0.9 V) to sustain a large positive voltage 
on the gate. For depletion-type devices, where a negative voltage is applied 
on the gate, the Schottky barrier is quite sufficient as a gate insulator (see, e.g., 
Ref. 52). 

The simplest lateral confinement technique is illustrated in Fig. 4a. The 

52D. Delagebeaudeuf and N. T. Linh, IEEE ?).ans. ED-28, 790 (1981). 



12 C. W. J. BEENAKKER AND H. VAN HOUTEN 

appropriate device geometry (such as a Hall bar) is realized by defining a deep 
mesa, by means of wet chemical etching. Wide Hall bars are usually 
fabricated in this way. This approach has also been used to fabricate the first 
micron-scale devices, such as the constrictions used in the study of the 
breakdown of the quantum Hall effect by Kirtley et ~ 1 . ~ ~  and Bliek et 
and the narrow channels used in the first study of quasi-one-dimensional 
quantum transport in heterostructures by Choi et ~ 1 . ~ ~  The deep-mesa 
confinement technique using ~ e t ~ ~ , ~ ~  or dry5' etching is still of use for some 
experimental studies, but it is generally felt to be unreliable for channels less 
than 1pm wide (in particular because of the exposed sidewalls of the 
structure). 

The first working alternative confinement scheme was developed by 
Thornton et ~ 1 . ~ '  and Zheng et who introduced the split-gate lateral 
confinement technique (Fig. 4b). On application of a negative voltage to a 
split Schottky gate, wide 2DEG regions under the gate are depleted, leaving a 
narrow channel undepleted. The most appealing feature of this confinement 
scheme is that the channel width and electron density can be varied 
continuously (but not independently) by increasing the negative gate voltage 
beyond the depletion threshold in the wide regions (typically about -0.6 V). 
The split-gate technique has become very popular, especially after it was used 
to fabricate the short and narrow constrictions known as quantum point 
 contact^^.'^^^ (see Section 111). The electrostatic confinement problem for the 
split-gate geometry has been studied numerically in Refs. 60 and 61. A simple 
analytical treatment is given in Ref. 62. A modification of the split-gate 
technique is the grating-gate technique, which may be used to define a 2DEG 
with a periodic density modulation.62 

The second widely used approach is the shallow-mesa depletion technique 
(Fig. 4c), introduced in Ref. 63. This technique relies on the fact that a 2DEG 

53J. P. Kirtley, Z. Schlesinger, T. N. Theis, F. P. Milliken, S. L. Wright, and L. F. Palmateer, 

54L. Bliek, E. Braun, G. Hein, V. Kose, J. Niemeyer, G. Weimann, and W. Schlapp, Semicond. 

55K. K. Choi, D. C. Tsui, and S. C. Palmateer, Phys. Rev. B 33, 8216 (1986). 
56A. D. C. Grassie, K. M. Hutchings, M. Lakrimi, C. T. Foxon, and J. J. Harris, Phys. Rev. B 36, 

57T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Appl. Phys. Lett. 53, 2176 (1988). 
58T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies, Phys. Rev. Lett. 56,1198 

59H. van Houten, B. J. van Wees, J. E. Mooij, C. W. J. Beenakker, J. G. Williamson, and C. T. 

6oS. E. Laux, D. J. Frank, and F. Stern, Surt Sci. 196, 101 (1988). 
61A. Kumar, S. E. Laux, and F. Stern, Appi. Phys. Lett. 54, 1270 (1989). 
6ZK. Ismail, W. Chu, D. A. Antoniadis, and H. I. Smith, Appl. Phys.  Lett. 52, 1071 (1988). 
63H. van Houten, B. J. van Wees, M. G. J. Heijman, and J. P. Andre, Appl. Phys. Lett. 49, 1781 

Phys. Rev. B 34, 5414 (1986). 

Sci. Technol. 1, 110 (1986). 

4551 (1987). 

(1986). 

Foxon, Europhys. Lett. 5, 721 (1988). 

(1986). 
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can be depleted by removal of only a thin layer of the AIGaAs, the required 
thickness being a sensitive function of the parameters of the heterostructure 
material, and of details of the lithographic process (which usually involves 
electron beam lithography followed by dry etching). The shallow-mesa etch 
technique has been perfected by two g r o ~ p s , ~ ~ - ~ ~  for the fabrication of 
multiprobe electron waveguides and  ring^.^^-^' Submicron trenches7’ are 
still another way to define the channel. For simple analytical estimates of 
lateral depletion widths in the shallow-mesa geometry, see Ref. 72. 

A clever variant of the split-gate technique was introduced by Ford et 
a1.73,74 A patterned layer of electron beam resist (an organic insulator) is used 
as a gate dielectric, in such a way that the separation between the gate and the 
2DEG is largest in those regions where a narrow conducting channel has to 
remain after application of a negative gate voltage. As illustrated by the cross- 
sectional view in Fig. 4d, in this way one can define a ring structure, for 
example, for use in an Aharonov-Bohm experiment. A similar approach was 
developed by Smith et al.75 Instead of an organic resist they use a shallow- 
mesa pattern in the heterostructure as a gate dielectric of variable thickness. 
Initially, the latter technique was used for capacitive studies of one- and zero- 
dimensional ~ o n f i n e m e n t . ~ ~ , ~ ~  More recently it was adopted for transport 
measurements as Still another variation of this approach was 

64R. E. Behringer, P. M. Mankiewich, and R. E. Howard, J. Vac. Sci. Technol. B5, 326 (1987). 
“’A. Scherer, M. L. Roukes, H. G. Craighead, R. M. Ruthen, E. D. Beebe, and J. P. Harbison, 

66A. Scherer and M. L. Roukes, Appl. Phys. Lett. 55, 377 (1989). 
67M. L. Roukes, A. Scherer, S. J. Allen, Jr., H. G. Craighead, R. M. Ruthen, E. D. Beebe, and J. 

68G. Timp, A. M. Chang, P. Mankiewich, R. Behringer, J. E. Cunningham, T. Y. Chang, and R. 

69G. Timp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P. Mankiewich, R. Behringer, and R. 

70A. M. Chang, G. Timp, T. Y. Chang, J. E. Cunningham, P. M. Mankiewich, R. E. Behringer, 

71K. Y. Lee, T. P. Smith, 111, C. J. B. Ford, W. Hansen, C. M. Knoedler, J. M. Hong, and D. P. 

72J. H. Davies and J. A. Nixon, Phys. Rev. B 39, 3423 (1989); J. H. Davies, in Ref. 15. 
73C. J. B. Ford, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, G. J. Davies, and D. 

74C. J. B. Ford, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, C. T. Foxon, J. J. Harris, 

75T. P. Smith 111, H. Arnot, J. M. Hong, C. M. Knoedler, S. E. Laux, and H. Schmid, Phys. Rev. 

’“T. P. Smith, 111, J. A. Brum, J. M. Hong, C. M. Knoedler, H. Arnot, and L. Esaki, Phys. Reo. 

77C. J. B. Ford, S. Washburn, M. Buttiker, C. M. Knoedler, and J. M. Hong, Phys. Rev. Lett. 62, 

App l .  Phys.  Lett. 51, 2133 (1987). 

P. Harbison, Phys. Rev. Lett. 59, 3011 (1987). 

E. Howard, Phys. Rev. Lett. 59, 732 (1987). 

E. Howard, Phys. Rev. Lett. 58, 2814 (1987). 

and R. E. Howard, Solid State Comm. 67, 769 (1988). 

Kern, Appt. Phys. Lett. 55, 625 (1989). 

Andrews, Superlattices and Microstructures 4, 541 (1988). 

and C. Roberts, J .  Phys.  C. 21, L325 (1988). 

Lett. 59, 2802 (1987). 

Lett. 61, 585 (1988). 

2724 (1989). 
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FIG. 5. Scanning electron micrographs of nanostructures in GaAs- AlGaAs heterostructures. 
(a) Narrow channel (width 75 nm), fabricated by means of the confinement scheme of Fig. 4c. The 
channel has side branches (at a 2-pm separation) that serve as voltage probes. Taken from M. L. 
Roukes et at., Phys. Rev. Lett. 59,301 1 (1987). (b) Double quantum point contact device, based on 
the confinement scheme of Fig. 4b. The bar denotes a length of 1 pm. Taken from H. van Houten 
et al., Phys. Rev. B 39, 8556 (1989). 

developed by Hansen et ~ l . , ' ~ . ' ~  primarily for the study of one-dimensional 
subband structure using infrared spectroscopy. Instead of electron beam 
lithography, they employ a photolithographic technique to define a pattern in 
the insulator. An array with a very large number of narrow lines is obtained 
by projecting the interference pattern of two laser beams onto light-sensitive 
resist. This technique is known as holographic illumination (see Section 1 lb). 

As two representative examples of state-of-the-art nanostructures, we 
show in Fig. 5a a miniaturized Hall bar,67 fabricated by a shallow-mesa etch, 
and in Fig. 5b a double-quantum-point contact device,80 fabricated by means 
of the split-gate technique. 

Other techniques have been used as well to fabricate narrow electron gas 
channels. We mention selective-area ion implantation using focused ion 
beams,*' masked ion beam exposure,82 strain-induced ~onf inemen t ,~~  lateral 

"W. Hansen, M. Horst, J. P. Kotthaus, U. Merkt, Ch. Sikorski, and K. Ploog, Phys. Rev. Lett. 

79F. Brinkop, W. Hansen, J. P. Kotthaus, and K. Ploog, Phys. Rev. B 37,6547 (1988). 
'OH. van Houten, C. W. J. Beenakker, J. G. Williamson, M. E. I. Broekaart, P. H. M. van 

Loosdrecht, B. J. van Wees, J. E. Mooij, C. T. Foxon, and J. J. Harris, Phys. Rev. B 39, 8556 
(1989). 

58, 2586 (1987). 

'lT. Hiramoto, K. Hirakawa, Y. Iye, and T. Ikoma, Appl. Phys. Lett. 54, 2103 (1989). 
"T. L. Cheeks, M. L. Roukes, A. Scherer, and H. G. Graighead, Appl. Phys. Lett. 53, 1964 

83K. Kash, J. M. Worlock, M. D. Sturge, P. Grabbe, J. P. Harbison, A. Scherer, and P. S. D. Lin, 
(1988). 

Appl.  Phys. Lett. 53, 782 (1988). 
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p-n  junction^,^^^^^ gates in the plane of the 2DEG,s6 and selective epitaxial 
g r o ~ t h . ” - ~ ’  For more detailed and complete accounts of nanostructure 
fabrication techniques, we refer to Refs. 9 and 13-15. 

4. BASIC PROPERTIES 

a. Density of States in Two, One, and Zero Dimensions 

2DEG, relative to the bottom of that subband, is given by 
The energy of conduction electrons in a single subband of an unbounded 

E(k) = h2k2/2m, (4.1) 

as a function of momentum hk. The effective mass m is considerably smaller 
than the free electron mass me (see Table I), as a result of interactions with the 
lattice potential. (The incorporation of this potential into an effective mass is 
an approximation” that is completely justified for the present purposes.) The 
density of states p ( E )  = dn(E)/dE is the derivative of the number of electronic 
states n(E)  (per unit surface area) with energy smaller than E .  In k-space, these 
states are contained within a circle of area A = 2nmE/h2 [according to Eq. 
(4.1)], which contains a number g,g,A/(2~)~ of distinct states. The factors g, 
and g, account for the spin degeneracy and valley degeneracy, respectively 
(Table I). One thus finds that n(E) = gsgvmE/2nh2, so the density of states 
corresponding to a single subband in a 2DEG, 

P(E) = gsgv m/2nh2, (4.2) 

is independent of the energy. As illustrated in Fig. 6a, a sequence of subbands 
is associated with the set of discrete levels in the potential well that confines 
the 2DEG to the interface. At zero temperature, all states are filled up to the 
Fermi energy E,  (this remains a good approximation at finite temperature if 
the thermal energy k , T c  EF). Because of the constant density of states, the 
electron (sheet) density n, is linearly related to EF by n, = EFgsgvm/2nh2. The 
Fermi wave number kF = (2mEF/h2)“2 is thus related to the density by 
k ,  = (4nn,/gsgv)’/2. The second subband starts to be populated when EF 
exceeds the energy of the second band bottom. The stepwise increasing 

84U. Meirav, M. Heiblum, and F. Stern, Appl.  Phys. Lett. 52, 1268 (1988). 
ssU. Meirav, M. A. Kastner, M. Heiblum, and S. J.  Wind, Phys. Rev. B 40, 5871 (1989). 
86A, D. Wieck and K. Ploog, Sur& Sci. 229, 252 (1990); Appl. Phys. Lett. 56, 928 (1990). 
*’P. M. Petroff, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 45, 620 (1984). 
88T. Fukui and H. Saito, Appl .  Phys.  Lett. 50, 824 (1987). 
89H. Asai, S. Yamada, and T. Fukui, Appl .  Phys. Lett. 51, 1518 (1987). 
90T. Fukui, and H. Saito, J. Vac. Sci. Technol. B6, 1373 (1988). 
91J. Motohisa, M. Tanaka, and H. Sakaki, Appl .  Phys. Lett. 55, 1214 (1989). 
9ZH. Yamaguchi and Y. Horikoshi, Jpn. J .  Appl. Phys. 28, L1456 (1989). 
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a t  

FIG. 6. Density of states p(E) as a function of energy. (a) Quasi-2D density of states, with only 
the lowest subband occupied (hatched). Inset: Confinement potential perpendicular to the plane 
of the 2DEG. The discrete energy levels correspond to the bottoms of the first and second 2D 
subbands. (b) Quasi-ID density of states, with four 1D subbands occupied. Inset: Square-well 
lateral confinement potential with discrete energy levels indicating the 1D subband bottoms. (c) 
Density of states for a 2DEG in a perpendicular magnetic field. The occupied OD subbands or 
Landau levels are shown in black. Impurity scattering may broaden the Landau levels, leading to 
a nonzero density of states between the peaks. 
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density of states shown in Fig. 6a is referred to as quasi-two-dimensional. As 
the number of occupied subbands increases, the density of states eventually 
approaches the ,,,k dependence characteristic for a three-dimensional 
system. Note, however, that usually only a single subband is occupied. 

If the 2 D E G  is confined laterally to a narrow channel, then Eq. (4.1) only 
represents the kinetic energy from the free motion (with momentum hk) 
parallel to the channel axis. Because of the lateral confinement, a single two- 
dimensional (2D) subband is split itself into a series of one-dimensional (1D) 
subbands, with band bottoms at E n ,  n = 1,2,. . . . The total energy En@)  of an 
electron in the nth 1D subband (relative to the bottom of the 2D subband) is 
given by 

E,(k) = En + h2k2/2m. (4.3) 

Two frequently used potentials to model analytically the lateral confinement 
are the square-well potential (of width illustrated in Fig. 6b) and the 
parabolic potential well (described by V(x) = $moXxZ). The confinement 
levels are then given either by En = ( n ~ h ) ~ / 2 m W ~  for the square well or by 
En = (n  - *)hw, for the parabolic well. When one considers electron trans- 
port through a narrow channel, it is useful to distinguish between states with 
positive and negative k, since these states move in opposite directions along 
the channel. We denote by p: (E)  the density of states with k =- 0 per unit 
channel length in the nth 1D subband. This quantity is given by 

h2 1/2 

p,+(E) = gsgv (2. y)-l = gsgv ( ) . (4.4) 
27ch 2m(E - En) 

The density of states pn- with k < 0 is identical to p:. (This identity holds 
because of time-reversal symmetry; In a magnetic field, p,' # p i ,  in general.) 
The total density of states p(E),  drawn in Fig. 6b, is twice the result (4.4) 
summed over all n for which En < E .  The density of states of a quasi-one- 
dimensional electron gas with many occupied 1D subbands may be approxi- 
mated by the 2 D  result (4.2). 

If a magnetic field B is applied perpendicular to an unbounded %DEG, the 
energy spectrum of the electrons becomes fully discrete, since free trans- 
lational motion in the plane of the 2DEG is impeded by the Lorentz force. 
Quantization of the circular cyclotron motion leads to energy levels at93 

En = (n - @o,, (4.5) 

with o, = eB/m the cyclotron frequency. The quantum number n = 1,2 ,  . . . 
labels the Landau levels. The number of states is the same in each Landau 
level and equal to one state (for each spin and valley) per flux quantum h/e 

93L. D. Landau and E. M. Lifshitz, "Quantum Mechanics." Pergamon, Oxford, 1977. 
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through the sample. To the extent that broadening of the Landau levels by 
disorder can be neglected, the density of states (per unit area) can be 
approximated by 

as illustrated in Fig. 6c. The spin degeneracy contained in Eq. (4.6) is resolved 
in strong magnetic fields as a result of the Zeeman splitting gpBB of the 
Landau levels (pb = eh/2me denotes the Bohr magneton; the Land6 g-factor is 
a complicated function of the magnetic field in these systems)." Again, if a 
large number of Landau levels is occupied (i.e., at weak magnetic fields), one 
recovers approximately the 2D result (4.2). The foregoing considerations are 
for an unbounded 2DEG. A magnetic field perpendicular to a narrow 2DEG 
channel causes the density of states to evolve gradually from the I D  form of 
Fig. 6b to the effectively OD form of Fig. 6c. This transition is discussed in 
Section 10. 

b. Drude Conductivity, Einstein Relation, and Landauer Formula 

In the presence of an electric field E in the plane of the 2DEG, an electron 
acquires a drift velocity v = - eE At/m in the time At since the last impurity 
collision. The average of At is the scattering time z, so the average drift 
velocity Vdrift is given by 

Vdrift = -peK pe = ez/m. (4.7) 

The electron mobility p e  together with the sheet density n, determine the 
conductivity o in the relation - ensvdrift = oE. The result is the familiar Drude 
cond~ctivity,'~ which can be written in several equivalent forms: 

e2nsz e2 k,l 
= 9S9" - -. o = en,pL, = ~ 

h 2  m 

In the last equality we have used the identity n, = gsgv k$/4n (see Section 4a) 
and have defined the mean free path 1 = uFz. The dimensionless quantity k,l 
is much greater than unity in metallic systems (see Table I for typical values in 
a 2DEG), so the conductivity is large compared with the quantum unit 
e2/h x (26 kQ) ~ '. 

From the preceding discussion it is obvious that the current induced by 
the applied electric field is carried by all conduction electrons, since each 
electron acquires the same average drift velocity. Nonetheless, to determine 
the conductivity it is sufficient to consider the response of electrons near the 

94N. W. Ashcroft and N. D. Mermin, "Solid State Physics." Holt, Rinehart and Winston, New 
York, 1976. 
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Fermi level to the electric field. The reason is that the states that are more 
than a few times the thermal energy k,T below EF are all filled so that in 
response to a weak electric field only the distribution of electrons among 
states at energies close to EF is changed from the equilibrium Fermi-Dirac 
distribution 

(4.9) 

The Einstein relation94 

0 = e2p(EF)D (4.10) 

is one relation between the conductivity and Fermi level properties (in this 
case the density of states p ( E )  and the diffusion constant D, both evaluated at 
EF). The Landauer formula4 [Eq. (4.21)] is another such relation (in terms of 
the transmission probability at the Fermi level rather than in terms of the 
diffusion constant). 

The Einstein relation (4.10) for an electron gas at zero temperature follows 
on requiring that the sum of the drift current density - a E / e  and the diffusion 
current density - DVn, vanishes in thermodynamic equilibrium, character- 
ized by a spatially constant electrochemical potential p: 

(4.1 1) 

The electrochemical potential is the sum of the electrostatic potential energy 
-eV (which determines the energy of the bottom of the conduction band) 
and the chemical potential EF (being the Fermi energy relative to the 
conduction band bottom). Since (at zero temperature) dEF/dns = l/p(EF), one 
has 

-oE/e - DVn, = 0, when V p  = 0. 

V p  = eE + p(EF)-'Vns.  (4.12) 

The combination of Eqs. (4.11) and (4.12) yields the Einstein relation (4.10) 
between o and D .  To verify that Eq. (4.10) is consistent with the earlier 
expression (4.8) for the Drude conductivity, one can use the result (see below) 
for the 2D diffusion constant: 

D = +V$T = ~ v J ,  (4.13) 

in combination with Eq. (4.2) for the 2D density of states. 
At a finite temperature IT: a chemical potential (or Fermi energy) gradient 

VEF induces a diffusion current that is smeared out over an energy range of 
order k,T around E F .  The energy interval between E and E + dE contributes 
to the diffusion current density j an amount dj given by 

df 
dEF 

djd i f f  = - DV{ p ( E ) f ( E  - EF) d E }  = - d E  Dp(E) - VEF, (4.14) 
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where the diffusion constant D is to be evaluated at  energy E.  The total 
diffusion current density follows on integration over E: 

(4.15) 

with o(E,O) the conductivity (4.10) at temperature zero for a Fermi energy 
equal to E.  The requirement of vanishing current for a spatially constant 
electrochemical potential implies that the conductivity a(EF, 7‘) at temper- 
ature T and Fermi energy E ,  satisfies a(E,, T)eC2VEF + j = 0. Therefore, the 
finite-temperature conductivity is given simply by the energy average of the 
zero-temperature result 

(4.16) 

As T+ 0, d f / d E ,  + 6(E - EF), so indeed only E = E ,  contributes to the 
energy average. Result (4.16) contains exclusively the effects of a finite 
temperature that are due to the thermal smearing of the Fermi-Dirac 
distribution. A possible temperature dependence of the scattering processes is 
not taken into account. 

We now want to discuss one convenient way to calculate the diffusion 
constant (and hence obtain the conductivity). Consider the diffusion current 
densityj, due to a small constant density gradient, n(x)  = no + cx. We write 

j, = lim (u,(t  = O)n(x(t = -At))) = lim c (~ , (O)x( -A t ) )  
A t - m  Ar+m 

d t (u , (O)v , ( - t ) ) ,  
At+ m 

(4.17) 

where t is time and the brackets (...) denote an isotropic angular average 
over the Fermi surface. The time interval At -+ 00, so the velocity of the 
electron at time 0 is uncorrelated with its velocity at the earlier time - A t .  
This allows us to neglect at  x( -At) the small deviations from an isotropic 
velocity distribution induced by the density gradient [which could not have 
been neglected at  x(O)]. Since only the time difference matters in the velocity 
correlation function, one has (o,(O)u,( - t ) )  = (u,(t)u,(O)). We thus obtain for 
the diffusion constant D = - j J c  the familiar linear response formula95 

r m  
(4.18) 

Since, in the semiclassical relaxation time approximation, each scattering 
event is assumed to destroy all correlations in the velocity, and since a 

95R. Kubo, M. Toda, and N. Hashitsume, “Statistical Physics 11.” Springer, Berlin, 1985. 
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fraction exp( - t / z )  of the electrons has not been scattered in a time t, one has 
(in 2D) 

(u,(t)u,(O)) = (u,(0)2)e-t/r = +uS.e-'/'. (4.19) 

Substituting this correlation function for the integrand in Eq. (4.18), one 
recovers on integration the diffusion constant (4.13). 

The Drude conductivity (4.8) is a semiclassical result, in the sense that 
while the quantum mechanical Fermi-Dirac statistic is taken into account, 
the dynamics of the electrons at the Fermi level is assumed to be classical. In 
Section I1 we will discuss corrections to this result that follow from 
correlations in the diffusion process due to quantum interference. Whereas 
for classical diffusion correlations disappear on the time scale of the 
scattering time T [as expressed by the correlation function (4.19)], in quantum 
diffusion correlations persist up to times of the order of the phase coherence 
time. The latter time T+ is associated with inelastic scattering and at low 
temperatures can become much greater than the time t associated with elastic 
scattering. 

In an experiment one measures a conductance rather than a conductivity. 
The conductivity u relates the local current density to the electric field, 
j = uE, while the conductance G relates the total current to the voltage drop, 
I = GI/: For a large homogeneous conductor the difference between the two 
is not essential, since Ohm's law tells us that 

G = (W/L)u (4.20) 

for a 2DEG of width W and length L in the current direction. (Note that G 
and o have the same units in two dimensions.) If for the moment we disregard 
the effects of phase coherence, then the simple scaling (4.20) holds provided 
both Wand L are much larger than the mean free path 1. This is the diffusive 
transport regime, illustrated in Fig. 7a. When the dimensions of the sample 
are reduced below the mean free path, one enters the ballistic transport 
regime, shown in Fig. 7c. One can further distinguish an intermediate quasi- 
ballistic regime, characterized by W < l < L (see Fig. 7b). In ballistic 
transport only the conductance plays a role, not the conductivity. The 
Landauer formula 

G = (ez/h)T (4.21) 

plays a central role in the study of ballistic transport because it expresses the 
conductance in terms of a Fermi level property of the sample (the trans- 
mission probability T, see Section 12). Equation (4.21) can therefore be 
applied to situations where the conductivity does not exist as a local quantity, 
as we will discuss in Sections I11 and IV. 

If phase coherence is taken into account, then the minimal length scale 
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Diffusive J 

Quasi - ballistic 

Ballistic 

- L<< I - 
FIG. 7. Electron trajectories characteristic for the diffusive ( I  < u! I,), quasi-ballistic 

(W < l < L), and ballistic (W L < I )  transport regimes, for the case of specular boundary 
scattering. Boundary scattering and internal impurity scattering (asterisks) are of equal 
importance in the quasi-ballistic regime. A nonzero resistance in the ballistic regime results from 
backscattering at the connection between the narrow channel and the wide ZDEG regions. 
Taken from H. van Houten et al., in “Physics and Technology of Submicron Structures” (H. 
Heinrich, G. Bauer, and F. Kuchar, eds.]. Springer, Berlin, 1988. 

required to characterize the conductivity becomes larger. Instead of the 
(elastic) mean free path 1 = vFz, the phase coherence length I ,  = ( 0 ~ ~ ) ~ ’ ~  
becomes this characteristic length scale (up to a numerical coefficient 
1, equals the average distance that an electron diffuses in the time 7,). Ohm’s 
law can now only be applied to add the conductances of parts of the sample 
with dimensions greater than Z+. Since at low temperatures l+ can become 
quite large (cf. Table I), it becomes possible that (for a small conductor) phase 
coherence extends over a large part of the sample. Then only the conductance 
(not the conductivity) plays a role, even if the transport is fully in the diffusive 
regime. We will encounter such situations repeatedly in Section 11. 

c. Magnetotransport 

In a magnetic field B perpendicular to the ZDEG, the current is no longer 
in the direction of the electric field due to the Lorentz force. Consequently, 
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the conductivity is no longer a scalar but a tensor (r, related via the Einstein 
relation (r = e2p(EF)D to the diffusion tensor 

r m  
D = J dt (v(t)v(O)). 

0 
(4.22) 

Equation (4.22) follows from a straightforward generalization of the argu- 
ment leading to the scalar relation (4.18) [but now the ordering of v(t) and v(0) 
matters]. Between scattering events the electrons at the Fermi level execute 
circular orbits, with cyclotron frequency o, = eB/m and cyclotron radius 
lcycl = mv,/eB. Taking the 2DEG in the x - y  plane, and the magnetic field in 
the positive z-direction, one can write in complex number notation 

5(t) ~ , ( t )  + iu,(t) = uFexp(i6 + io,t). (4.23) 

The diffusion tensor is obtained from 

where D is the zero-field diffusion constant (4.13). One easily verifies that 
D,, = D,, and D,, = - D,,. From the Einstein relation one then obtains the 
conductivity tensor 

o - w,z 

1 + (o,z)Z 1 >. (r= (4.25) 

with o the zero-field conductivity (4.8). The resistivity tensor p = 0 - l  has the 
form 

(4.26) 

with p = 0-l = m/n,e2z the zero-field resistivity. 

2DEG: 
The off-diagonal element p,, = R ,  is the classical Hall resistance of a 

(4.27) 

Note that in a 2D channel geometry there is no distinction between the Hall 
resistivity and the Hall resistance, since the ratio of the Hall voltage 
V, = WE, across the channel to the current I = Wj, along the channel does 
not depend on its length and width (provided transport remains in the 
diffusive regime). The diagonal element pxx is referred to as the longitudinal 
resistivity. Equation (4.26) tells us that classically the magnetoresistivity is 
zero (i.e., p,,(B) - p,,(O) = 0). This counterintuitive result can be understood 
by considering that the force from the Hall voltage cancels the average 
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FIG. 8. Schematic dependence on the reciprocal filling factor v - l  = 2eB/hn, of the longi- 

tudinal resistivity p, ,  (normalized to the zero-field resistivity p) and of the Hall resistance 
R, = p x y  (normalized to h/2ez). The plot is for the case of a single valley with twofold spin 
degeneracy. Deviations from the semiclassical result (4.26) occur in strong magnetic fields, in the 
form of Shubnikov-De Haas oscillations in pXx and quantized plateaus [Eq. (4.30)] in pxy. 

Lorentz force on the electrons. A general conclusion that one can draw from 
Eqs. (4.25) and (4.26) is that the classical effects of a magnetic field are 
important only if w,t k 1. In such fields an electron can complete several 
cyclotron orbits before being scattered out of orbit. In a high-mobility 2DEG 
this criterion is met at rather weak magnetic fields (note that w,z = peB, and 
see Table I). 

In the foregoing application of the Einstein relation we have used the zero- 
field density of states. Moreover, we have assumed that the scattering time is 
B-independent. Both assumptions are justified in weak magnetic fields, for 
which EF/ho, >> 1, but not in stronger fields (cf. Table I). As illustrated in Fig. 
8, deviations from the semiclassical result (4.26) appear as the magnetic field is 
increased. These deviations take the form of an oscillatory magnetoresistivity 
(the Shubnikou-De Haas eflect) and plateaux in the Hall resistance (the 
quantum Hall efect). The origin of these two phenomena is the formation of 
Landau levels by a magnetic field, discussed in Section 4a, that leads to the B- 
dependent density of states (4.6). The main effect is on the scattering rate z-’, 
which in a simple (Born) approximationg6 is proportional to p(EF): 

z - = (n/h)p(EF)ciu2. (4.28) 

96A. A. Abrikosov, “Fundamentals of the Theory of Metals.” North-Holland, Amsterdam, 1988. 
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Here ci is the areal density of impurities, and the impurity potential is 
modeled by a 2D delta function of strength u. The diagonal element of the 
resistivity tensor (4.26) is pxx = (rn/e2n,)T- cc p(E,).  Oscillations in the 
density of states at the Fermi level due to the Landau level quantization are 
therefore observable as an oscillatory magnetoresistivity. One expects the 
resistivity to be minimal when the Fermi level lies between two Landau levels, 
where the density of states is smallest. In view of Eq. (4.6), this occurs when 
the Landau level jilling factor v = (n,/g,g,)h/eB) equals an integer N = 1,2, 
. . . (assuming spin-degenerate Landau levels). The resulting Shubnikov-De 
Haas oscillations are periodic in 1/B, with spacing A(l/B) given by 

A -  (A) h n, ' 
(4.29) 

providing a means to determine the electron density from a magnetoresis- 
tance measurement. This brief explanation of the Shubnikov-De Haas effect 
needs refinement," but is basically correct. The quantum Hall effect,* being 
the occurrence of plateaux in R, versus B at precisely 

(4.30) 

is a more subtle effect97 to which we cannot do justice in a few lines (see 
Section 18). The quantization of the Hall resistance is related on a funda- 
mental level to the quantization in zero magnetic field of the resistance of a 
ballistic point c ~ n t a c t . ~ , ~  We will present a unified description of both these 
effects in Sections 12 and 13. 

II. Diffusive and Quasi-Ballistic Transport 

5. CLASSICAL SIZE EFFECTS 

In metals, the dependence of the resistivity on the size of the sample has 
been the subject of study for almost a ~en tu ry .~ '  Because of the small Fermi 
wave length in a metal, these are classical size effects. Comprehensive reviews 
of this field have been given by Chambers,99 Brandli and Olsen,"' Sond- 
heimer,"' and, recently, Pippard.lo2 In semiconductor nanostructures both 

9'R. E. Prange and S .  M. Girvin, eds., The Quantum Hall Effect." Springer, New York, 1987. 
"I. Stone, Phys. Reo. 6, 1 (1898). 
99R. G. Chambers, in "The Physics of Metals," Vol. 1 (J. M. Ziman, ed.). Cambridge University 

looG. Brandli and J. L. Olsen, Mater. Sci. Eng. 4, 61 (1969). 
lolE. H. Sondheimer, Adu. Phys. 1, 1 (1952). 
''*A. B. Pippard, "Magnetoresistance in Metals." Cambridge University Press, Cambridge, 

Press, Cambridge, 1969. 

1989. 
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classical and quantum size effects appear, and an understanding of the former 
is necessary to distinguish them from the latter. Classical size effects in a 
2DEG are of intrinsic interest as well. First of all, a 2DEG is an ideal model 
system to study known size effects without the complications of nonspherical 
Fermi surfaces and polycrystallinity, characteristic for metals. Furthermore, 
it is possible in a 2DEG to study the case of nearly complete specular 
boundary scattering, whereas in a metal diffuse scattering dominates. The 
much smaller cyclotron radius in a 2DEG, compared with a metal at the 
same magnetic field value, allows one to enter the regime where the cyclotron 
radius is comparable to the range of the scattering potential. The resulting 
modifications of known effects in the quasi-ballistic transport regime are the 
subject of this section. A variety of new classical size effects, not known from 
metals, appear in the ballistic regime, when the resistance is measured on a 
length scale below the mean free path. These are discussed in Section 16, and 
require a reconsideration of what is meant by a resistance on such a short 
length scale. 

In the present section we assume that the channel length L (or, more 
generally, the separation between the voltage probes) is much larger than the 
mean free path 1 for impurity scattering so that the motion remains diffusive 
along the channel. Size effects in the resistivity occur when the motion across 
the channel becomes ballistic (i.e., when the channel width W <  1 ) .  Diffuse 
boundary scattering leads to an increase in the resistivity in a zero magnetic 
field and to a nonmonotonic magnetoresistivity in a perpendicular magnetic 
field, as discussed in the following two subsections. The 2D channel geometry 
is essentially equivalent to the 3D geometry of a thin metal plate in a parallel 
magnetic field, with the current flowing perpendicular to the field. Size effects 
in this geometry were originally studied by F ~ c h s ' ' ~  in a zero magnetic field 
and by MacDonaldlo4 for a nonzero field. The alternative configuration in 
which the magnetic field is perpendicular to the thin plate, studied by 
S~ndheimer,' '~ does not have a 2D analog. We discuss in this section only 
the classical size effects, and thus the discreteness of the 1D subbands and of 
the Landau levels is ignored. Quantum size effects in the quasi-ballistic 
transport regime are treated in Section 10. 

a. Boundary Scattering 

In a zero magnetic field, scattering at  the channel boundaries increases the 
resistivity, unless the scattering is specular. Specular scattering occurs if the 
confining potential V(x ,y )  does not depend on the coordinate y along the 
channel axis. In that case the electron motion along the channel is not 

lo3K. Fuchs, Proc. Cambridge Philos. SOC. 34, 100 (1938). 
'04D. K. C. MacDonald, Nature 163,637 (1949); D. K. C. MacDonald and K. Sarginson, Proc. 

lo5E. H. Sondheimer, Nature 164, 920 (1949); Phys. Rev. 80, 401 (1950). 
Roy. SOC. A 203, 223 (1950). 
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influenced at all by the lateral confinement, so the resistivity p retains its 2D 
bulk value po = m/e2n,z. More generally, specular scattering requires any 
roughness of the boundaries to be on a length scale smaller than the Fermi 
wavelength &. The confining potential created electrostatically by means of a 
gate electrode is known to cause predominantly specular scattering (as has 
been demonstrated by the electron focusing experimentss9 discussed in 
Section 14). This is a unique situation, not previously encountered in metals, 
where as a result of the small A, (on the order of the interatomic separation) 
diffuse boundary scattering dominates.lo2 

Diffuse scattering means that the velocity distribution at the boundary is 
isotropic for velocity directions that point away from the boundary. Note 
that this implies that an incident electron is reflected with a (normalized) 
angular distribution P(a) = ~ C O S  a, since the reflection probability is pro- 
portional to the flux normal to the boundary. Diffuse scattering increases the 
resistivity above po by providing an upper bound W to the effective mean free 
path. In order of magnitude, p - (l/W)po if 1 2 W (a more precise expression 
is derived later). In general, boundary scattering is neither fully specular nor 
fully diffuse and, moreover, depends on the angle of incidence (grazing 
incidence favors specular scattering since the momentum along the channel is 
large and not easily reversed). The angular dependence is often ignored for 
simplicity, and the boundary scattering is described, following Fuchs,lo3 by a 
single parameter p ,  such that an electron colliding with the boundary is 
reflected specularly with probability p and diffusely with probability 1 - p .  
This specularity parameter is then used as a fit parameter in comparison with 
experiments. SofferLo6 has developed a more accurate, and more complicated, 
modeling in terms of an angle of incidence dependent specularity parameter. 

In the extreme case of fully diffuse boundary scattering ( p  = 0), one is 
justified in neglecting the dependence of the scattering probability on the 
angle of incidence. We treat this case here in some detail to contrast it with 
fully specular scattering, and because diffuse scattering can be of importance 
in 2DEG channels defined by ion beam exposure rather than by  gate^.'^'*'^* 
We calculate the resistivity from the diffusion constant by means of the 
Einstein relation. Fuchs takes the alternative (but equivalent) approach of 
calculating the resistivity from the linear response to an applied electric 
field.’03 Impurity scattering is taken as isotropic and elastic and is described 
by a scattering time T such that an electron is scattered in a time interval dt 
with probability dt/z, regardless of its position and velocity. This is the 
commonly employed “scattering time” (or “relaxation time”) approximation. 

”%. B. Soffer, J .  App l .  Phys. 38, 1710 (1967). 
“’T. J. Thornton, M. L. Roukes, A. Scherer, and B. P. van der Gaag, Phys. Rev. Lett. 63, 2128 

In8K. Nakamura, D. C. Tsui, F. Nihey, H. Toyoshima, and T. Itoh, Appl .  Phys. Lett. 56, 385 
(1989). 

( 1990). 
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The channel geometry is defined by hard walls at x = f W/2 at which the 
electrons are scattered diffusely. The stationary electron distribution function 
at the Fermi energy F(r,  a )  satisfies the Boltzmann equation 

(5.1) 

where r = (x, y) is the position and a is the angle that the velocity v = U,(COS a, 
sin a) makes with the x-axis. The boundary condition corresponding to 
diffuse scattering is that F is independent of the velocity direction for 
velocities pointing away from the boundary. In view of current conservation 
this boundary condition can be written as 

w n  3n 
for x = -, - < a < -, da‘ F(r, a’) cos a’, 

2 I”:’ - n / 2  2 2  2 
F(r, a) = - 

W n  n 
2 2  2 

d d  F(r, a’) cos a’, for x = - -, - - < a < -. (5.2) 

To determine the diffusion constant, we look for a solution of Eqs. (5.1) and 
(5.2) corresponding to a constant density gradient along the channel, 
F(r, a) = - cy +f(x, a). Since there is no magnetic field, we anticipate that the 
density will be uniform across the channel width so that !iff f d a  = 0. The 
Boltzmann equation (5.1) then simplifies to an ordinary differential equation 
for f, which can be solved straightforwardly. The solution that satisfies the 
boundary conditions (5.2) is 

)] (5.3) 
W 

F ( r , a ) =  -cy+cls ina  
2IJcosaJ Icosa ’ 

where we have written 1 3 U ~ Z .  One easily verifies that F has indeed a uniform 
density along x. The diffusion current 

(5.4) 

along the channel in response to the density gradient anlay = -2nc 
determines the diffusion constant D = -(Iy/W) (an/ay)- ’. The resistivity 
p = EF/n,e2D then follows from the Einstein relation (4.10), with the 2D 
density of states n,/EF. The resulting expression is 

which can be easily evaluated numerically. It is worth noting that the 
above result lo9  for p/po in a 2D channel geometry does not differ much 
(less than 20%) from the corresponding result’03 in a 3D thin film. 

‘09C. W. J. Beenakker and H. van Houten, Phys. Reu. B 38, 3232 (1988). 
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For 1/W << 1 one has 

which differs from Eq. (5 .5 )  by less than 10% in the range 1/W S 10. For 
1/W >> 1 one has asymptotically 

7 1 1 1  IT muF 1 

= T w In(llw) = T mG@iFj. 15.7) 

In the absence of impurity scattering (i.e., in the limit 1 -+ a), Eq. (5.7) predicts 
a vanishing resistivity. Diffuse boundary scattering is ineffective in establish- 
ing a finite resistivity in this limit, because electrons with velocities nearly 
parallel to the channel walls can propagate over large distances without 
collisions and thereby short out the current. As shown by Tesanovic et al.,' lo  

a small but nonzero resistivity in the absence of impurity scattering is 
recovered if one goes beyond the semiclassical approximation and includes 
the effect of the quantum mechanical uncertainty in the transverse compo- 
nent of the electron velocity. 

b. Magneto Size Effects 

In an unbounded 2DEG, the longitudinal resistivity is magnetic-field- 
independent in the semiclassical approximation (see Section 4c). We will 
discuss how a nonzero magnetoresistivity can arise classically as a result of 
boundary scattering. We consider the two extreme cases of specular and 
diffuse boundary scattering, and describe the impurity scattering in the 
scattering time approximation. Shortcomings of this approximation are 
discussed toward the end of this subsection. 

We consider first the case of specular boundary scattering. In a zero 
magnetic field it is obvious that specular scattering cannot affect the 
resistivity, since the projection of the electron motion on the channel axis is 
not changed by the presence of the channel boundaries. If a magnetic field is 
applied perpendicular to the 2DEG, the electron trajectories in a channel 
cannot be mapped in this way on the trajectories in an unbounded system. In 
fact, in an unbounded 2DEG in equilibrium the electrons perform closed 
cyclotron orbits between scattering events, whereas a channel geometry 
supports open orbits that skip along the boundaries. One might suppose that 
the presence of these skipping orbits propagating along the channel would 
increase the diffusion constant and hence reduce the (longitudinal) resistivity 
below the value po of a bulk 2DEG. That is not correct, at  least in the 
scattering time approximation, as we now demonstrate. 

lloZ. Tesanovic, M. V. Jaric, and S. Maekawa, Phys. Rev. Lett. 57, 2760 (1986). 
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The stationary Boltzmann equation in a magnetic field B in the z-direction 
(perpendicular to the 2DEG) is 

Here, we have used the identity-em- '(v x B). a/& = w,d/aa (with 
w, = eB/m the cyclotron frequency) to rewrite the term that accounts for the 
Lorentz force. The distribution function F(r, a) must satisfy the boundary 
conditions for specular scattering, 

F(r, a) = F(r, n - a), for x = & W/2. (5.9) 

One readily verifies that 

F(r, LX) = - c( y + w,zx) + cl sin a (5.10) 

is a solution of Eqs. (5.8) and (5.9). The corresponding diffusion current 
I ,  = ncWv,l and density gradient along the channel anlay = -2nc are both 
the same as in a zero magnetic field. It follows that the diffusion constant 
D = Iy/2ncW and, hence, the longitudinal resistivity p = E,/n,e2D are B- 
independent; that is, p = p o  E rn/n,e2z as in an unbounded 2DEG. More 
generally, one can show that in the scattering time approximation the 
longitudinal resistivity is B-independent for any confining potential V(x, y) 
that does not vary with the coordinate y along the channel axis. (This 
statement is proven by applying the result of Ref. 11 1, of a B-independent p y y  
for periodic V(x),  to a set of disjunct parallel channels (see Section llb); the 
case of a single channel then follows from Ohm's law.) 

In the case of diffuse boundary scattering, the zero-field resistivity is 
enhanced by approximately a factor 1 + 1/2W [see Eq. (5.6)]. A sufficiently 
strong magnetic field suppresses this enhancement, and reduces the resistivity 
to its bulk value po.  The mechanism for this negative magnetoresistance is 
illustrated in Fig. 9b. If the cyclotron diameter 21cyc1 is smaller than the 
channel width diffuse boundary scattering cannot reverse the direction of 
motion along the channel, as it could for smaller magnetic fields. The 
diffusion current is therefore approximately the same as in the case of 
specular scattering, in which case we have seen that the diffusion constant 
and, hence, resistivity have their bulk values. Figure 9 represents an example 
of magnetic reduction of backscattering. Recently, this phenomenon has been 
understood to occur in an extreme form in the quantum Hall effect112 and in 
ballistic transport through quantum point  contact^."^ The effect was 

'IIC. W. J. Beenakker, Phys. Rev. Lett. 62, 2020 (1989). 
'12M. Biittiker, Phys. Rev. B 38, 9375 (1988). 

H. van Houten, C. W. J. Beenakker, P. H. M. van Loosdrecht, T. J. Thornton, H. Ahmed, M. 
Pepper, C. T. Foxon, and J. J. Harris, Phys. Rev. B 37, 8534 (1988); and unpublished. 

113 
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B=O 
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FIG. 9. Illustration of the effect of a magnetic field on motion through a channel with diffuse 
boundary scattering. (a) Electrons which in a zero field move nearly parallel to the boundary can 
reverse their motion in weak magnetic fields. This increases the resistivity. (b) Suppression of 
backscattering at the boundaries in strong magnetic fields reduces the resistivity. 

essentially known and understood by MacDonald'04 in 1949 in the course of 
his magnetoresistivity experiments on sodium wires. The ultimate reduction 
of the resistivity is preceded by an initial increase in weak magnetic fields, due 
to the deflection toward the boundary of electrons with a velocity nearly 
parallel to the channel axis (Fig. 9a). The resulting nonmonotonic B- 
dependence of the resistivity is shown in Fig. 10. The plot for diffuse 
scattering is based on a calculation by Ditlefsen and Lothe'14 for a 3D thin- 
film geometry. The case of a 2D channel has been studied by Pippard'" in 
the limit l/W + co, and he finds that the 2D and 3D geometries give very 
similar results. 

An experimental study of this effect in a 2DEG has been performed by 
Thornton et ul.'07 In Fig. 11 their magnetoresistance data are reproduced for 
channels of different widths W, defined by low-energy ion beam exposure. It 
was found that the resistance reaches a maximum when W % 0.51,,,,, in 
excellent agreement with the theoretical predictions."4.'02 Thornton et al. 
also investigated channels defined electrostatically by a split gate, for which 
one expects predominantly specular boundary ~ c a t t e r i n g . ~ ~  The foregoing 
analysis would then predict an approximately B-independent resistance (Fig. 
lo), and indeed only a small resistance maximum was observed in weak 
magnetic fields. At stronger fields, however, the resistance was found to 
decrease substantially. Such a monotonically decreasing resistance in 

'I4E. Ditlefsen and J. Lothe, Phil. Mag.  14, 759 (1966). 
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FIG. 10. Magnetic field dependence of the longitudinal resistivity of a channel for the two 

cases of diffuse and specular boundary scattering, obtained from the Boltzmann equation in the 
scattering time approximation. The plot for diffuse scattering is the result of Ref. 114 for a 3D 
thin film geometry with I = 1OK (A 2D channel geometry is expected to give very similar 
results.*02) 
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FIG. 11. Experimental magnetic field dependence of the resistance of channels of different 
widths, defined by ion beam exposure in the 2DEG of a GaAs-AlGaAs heterostructure 
(L= 12 pm, T = 4.2 K). The nonmonotonic magnetic field dependence below 1 T is a classical 
size effect due to diffuse boundary scattering, as illustrated in Fig. 9. The magnetoresistance 
oscillations at higher fields result from the quantum mechanical Shubnikov-De Haas effect. 
Taken from T. J. Thornton et al., Phys. Reo. Lett. 63, 2128 (1989). 
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FIG. 12. Electron trajectories in a channel with specular boundary scattering, to illustrate how 
a magnetic field can suppress the backscattering by an isolated impurity close to a boundary. 
This effect would lead to a negative magnetoresistivity if one would go beyond the scattering 
time approximation. 

channels with predominantly specular boundary scattering was first reported 
by Choi et a l . 7  and studied for a narrower channel in Ref. 27 (see Section 9.b 
for some of these experimental results). We surmise that a classical negative 
magnetoresistance in the case of specular boundary scattering can result if the 
cyclotron radius becomes smaller than some characteristic correlation length 
in the distribution of impurities (and in the resulting potential landscape). 
Correlations between the positions of impurities and the channel boundaries, 
which are neglected in the scattering time approximation, will then play a 
role. For an example, see Fig. 12, which shows how an isolated impurity near 
the boundary can reverse the direction of electron motion in a zero magnetic 
field but not in a sufficiently strong magnetic field. In metals, where the 
cyclotron radius is much larger than in a 2DEG, an electron will effectively 
experience a random impurity potential between subsequent boundary 
collisions, so the scattering can well be described in terms of an average 
relaxation time, The experiments in a 2DEG suggest that this approximation 
breaks down at relatively weak magnetic fields. 

6. WEAK LOCALIZATION 

The temperature dependence of the Drude resistivity p = m/n,e2z is 
contained in that of the scattering time z, since the electron density is constant 
in a degenerate electron gas. As one lowers the temperature, inelastic 
scattering processes (such as electron-phonon scattering) are suppressed, 
leading to a decrease in the resistivity. The residual resistivity is due entirely 
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FIG. 13. Temperature dependence of the resistivity of a wide 2DEG in a GaAs-AlGaAs 
heterostructure (circles) and of two narrow channels of lithographic width with = 1Spm 
[squares) and Fit,, = 0.5prn (triangles). The channel length L =  1Opm. The resistivity is 
estimated from the measured resistance R by multiplying by %i,h/L, disregarding the difference 
between the conducting and lithographic width in the narrow channels. Taken from H. van 
Houten et al., Appl.  Phys. Lett. 49, 1781 (1986). 

to elastic scattering (with stationary impurities or other crystalline defects) 
and is temperature-independent in the semiclassical theory. Experimentally, 
however, one finds that below a certain temperature the resistivity of the 
2DEG starts to rise again. The increase is very small in broad samples, but 
becomes quite pronounced in narrow channels. This is illustrated in Fig. 13, 
where the temperature dependencies of the resistivities of wide and narrow 
GaAs- AlGaAs heterostructures are compared.63 

The anomalous resistivity increase is due to long-range correlations in the 
diffusive motion of an electron that are purely quantum mechanical. In the 
semiclassical theory it is assumed that a few scattering events randomize the 
electron velocity, so the velocity correlation function decays exponentially in 
time with decay time z [see Eq. (4.19)]. As discussed in Section 4 4  this 
assumption leads to the Drude formula for the resistivity. It is only in recent 
years that one has come to appreciate that purely elastic scattering is not 
effective in destroying correlations in the phase of the electron wave function. 
Such correlations lead to quantum interference corrections to the Drude 
result, which can explain the anomalous increase in the resistivity at low 
temperatures. 

A striking effect of quantum interference is to enhance the probability for 
backscattering in a disordered system in the metallic regime. This effect has 
been interpreted as a precursor of localization in strongly disordered systems 
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and has thus become known as weak In Section 6.a we 
describe the theory for weak localization in a zero magnetic field. The 
application of a magnetic field perpendicular to the 2DEG suppresses weak 
localization,' '' as discussed in Section 6.b. The resulting negative mag- 
netoresistivity is the most convenient way to resolve experimentally the weak 
localization correction.' l 9  The theory for a narrow channel in the quasi- 
ballistic transport regime'09.'20 differs in an interesting way from the theory 
for the diffusive regime,12' as a consequence of the jux  cancellation effect.'22 
The diffusive and quasi-ballistic regimes are the subjects of Sections 6.b and 
6 4  respectively. 

a. Coherent Backscattering 

The theory of weak localization was developed by Anderson et u1.'16 and 
Gorkov et a1.'17 This is a diagrammatic perturbation theory that does not 
lend itself easily to a physical interpretation. The interpretation of weak 
localization as coherent backscattering was put forward by Bergmann' 23 and 
by Khmel'nitskii and Larkin,'24*'25 and formed the basis of the path integral 
theory of Chakravarty and Schmid.' 26 In this description, weak localization 
is understood by considering the interference of the probability amplitudes 
for the classical trajectories (or "Feynman paths") from one point to another, 
as discussed later. For reviews of the alternative diagrammatic approach, we 
refer to Refs. 127 and 128. 

l15E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Reu. Lett. 

'16P. W. Anderson, E. Abrahams, and T .  V. Ramakrishnan, Phys. Reu. Lett. 43, 718 (1979). 
ll'L. P. Gorkov, A. I. Larkin, and D. E. Khmel'nitskii, Pis'ma Zh.  Eksp. Teor. Fiz. 30,248 (1979) 

'lag. L. Al'tshuler, D. Khmelnitskii, A. I. Larkin, and P. A. Lee, Phys. Reu. B 22, 5142 (1980). 
I1'A. Kawabata, J. Phys. Soc. Japan 49, 628 (1980). 
lZoV. K. Dugaev and D. E. Khmel'nitskii, Zh. Eksp. Teor. Fiz. 86,1784 (1984) [Sou. Phys.  J E T P  

lZ1B. L. Al'tshuler and A. G. Aronov, Pis'ma Zh. Eksp. Teor. Fiz. 33,515 (1981) [ J E T P  Lett. 33, 

lZ2P. G. De Gennes and M. Tinkham, Phys. ( N . Z )  1, 107 (1964); see also P. G. De Gennes, 

lZ3G. Bergmann, Phys. Rep. 107, 1 (1984); Phys. Rev. B 28, 2914 (1983). 
lZ4A. I. Larkin and D. E. Khmel'nitskii, Usp.  Fiz. Nauk 136, 536 (1982) [SOU. Phys. Usp.  25, 185 

lZ5D. E. Khmel'nitskii, Physica 126B, 235 (1984). 
lZ6S. Chakravarty and A. Schmid, Phys. Rep. 140, 193 (1986). 
"'P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985). 
lZsB. L. Al'tshuler, A. G. Aronov, D. E. Khmelnitskii, and A. I. Larkin, in "Quantum Theory of 

Solids," p. 130. (I. M. Lifshitz, ed.) Advances in Science and Technology in the USSR, Physics 
Series, MIR, Moskow. 

42, 673 (1979). 

[ J E T P  Lett. 30, 228 (1979)l. 

59, 1038 (1984)l. 

499 (1981)l. 

"Superconductivity of Metals and Alloys," Chapter 8. Benjamin, New York, 1966. 

(1982). 
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a 

r‘ 
FIG. 14. Mechanism of coherent backscattering. The 

probability amplitudes A ,  and A, of two trajectories from 
r to r’ have uncorrelated phases in general (a), but the 
amplitudes A +  and A -  of two time-reversed returning 
trajectories are equal (b). The constructive interference of 
A +  and A -  increases the probability for return to the 
point of departure, which is the origin of the weak 
localization effect. The volume indicated in black is the 
area I,u,dt covered by a flux tube in a time interval dt,  
which enters in Eq. (6.2) for the conductivity correction. 

In a Feynman path de~cript ion”~ of diffusion, the probability P(r, r’, t )  for 
motion from point r to point r’ in a time t consists of the absolute value 
squared of the sum of probability amplitudes Ai, one for each trajectory from 
r to r’ of duration t: 

P(r, r’, t )  = 1 Ai = C + C A,A; .  
1i (2 i i # j  

The restriction to classical trajectories in the sum over Feynman paths is 
allowed if the separation between scattering events is much larger than the 
wavelength (i.e., if k,l >> 1). The classical diffusion probability corresponds to 
the first term on the right-hand side of Eq. (6.1), while the second term 
accounts for quantum interference. In the diffusive transport regime there is a 
very large number of different trajectories that contribute to the sum. One 
might suppose that for this reason the interference term averages out, because 
different trajectories have uncorrelated phases. This is correct if the beginning 
and end points r and r‘ are different (Fig. 14a), but not if the two coincide (Fig. 
14b). In the latter case of “backscattered trajectories, one can group the 
contributions to the sum (6.1) in time-reversed pairs. Time-reversal inva- 
riance guarantees that the probability amplitudes A + and A- for clockwise 
and counterclockwise propagation around the closed loop are identical: 
A +  = A -  E A.  The coherent backscattering probability IA+ + A-1’ = 41A12 
is then twice the classical result. The enhanced probability for return to the 
point of departure reduces the diffusion constant and, hence, the conductiv- 
ity. This is the essence of weak localization. As phrased by Chakravarty and 
Schmid,’26 “it is one of those unique cases where the superposition principle 
of quantum mechanics leads to observable consequences at  the macroscopic 
level.” 

lZ9R. P. Feynman and A. R. Hibbs, “Quantum Mechanics and Path Integrals.” McGraw-Hill, 
New York, 1965. 
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The magnitude of the weak localization correction Soloc to the Drude 
conductivity CJ is proportional to the probability for return to the point of 
departure.'26 Since ~ c J ~ ~ ~  is assumed to be a small correction, one can estimate 
this probability from classical diffusion. Let C(t) dr denote the classical 
probability that an electron returns after a time t to within dr of its point of 
departure. The weak localization correction is given by the time integral of 
the return probability:'26 

The correction is negative because the conductivity is reduced by coherent 
backscattering. The factor tr/m cc A,uF follows in the path integral formalism 
from the area covered by a flux tube of width A, and length U, dt (see Fig. 14b). 
The factor exp( - t/z,) is inserted "by hand' to account for the loss of phase 
coherence after a time z, (as a result of inelastic scattering). The return 
probability C(t) in a 2D channel of width W is given for times t >> z in the 
diffusive regime by 

C(t) = (471Dt)-l, if t << W2/D, (6.3a) 

C(t) = W - ' ( ~ Z D ~ ) - ' / ~ ,  if t >> W2/D.  (6.3b) 

The l/t decay of the return probability (6.3a) assumes unbounded diffusion in 
two dimensions. A crossover to a lower l/& decay (6.3b) occurs when the 
root-mean-square displacement ( ~ D L ) " ~  exceeds the channel width, so 
diffusion occurs effectively in one dimension only. Because the time integral of 
C(t) itself diverges, the weak localization correction (6.2) is determined by the 
behavior of the return probability on the phase coherence time T,, which 
provides a long-time cutoff. One speaks of 2D or 1D weak localization, 
depending on whether the return probability C(z,) on the time scale of T, is 
determined by 2D diffusion (6.3a) or by 1D diffusion (6.3b). In terms of the 
phase coherence length Z, E (DT,)"~, the criterion for the dimensionality is 
that 2D weak localization occurs for I ,  << Wand 1D weak localization for 
1, >> W On short time scales t 5 z, the motion is ballistic rather than diffusive, 
and Eq. (6.3) does not apply. One expects the return probability to go to zero 
smoothly as one enters the ballistic regime. This short-time cutoff can be 
accounted for heuristically by the factor 1 - exp(-t/z), to exclude those 
electrons that at time t have not been scattered."' The form of the short-time 
cutoff becomes irrelevant for z, >> z. (See Ref. 130 for a theoretical study of 
weak localization in the regime of comparable zg and z.) 

I3OH. P. Wittman and A. Schmid, J .  Low Temp. Phys. 69, 131 (1987). 
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The foregoing analysis gives the following expressions for the 2D and 1D 
weak localization corrections: 

(6.4a) 

= - g g  __- ez  ‘4 ( 1 -  ( 1 + -  :)-’”), if 1, >> W,  (6.4b) 
2nh w 

where we have used the expression for the Drude conductivity IJ = eZp(EF)D 
with the 2D density of states (4.2). The ratio of the weak IocaIization 
correction to the Drude conductivity b c ~ , ~ ~ / c ~  is of order l/kFl for 2D weak 
localization and of order (l,/W)(l/kFl) for 1D weak localization. In the 2D 
case, the correction is small (cf. the values of kFl given in Table I), but still 
much larger than in a typical metal. The correction is greatly enhanced in the 
1D case 1, >> W This is evident in the experimental curves in Fig. 13, in which 
the resistivity increase at low temperatures is clearly visible only in the 
narrowest channel. 

The weak localization correction to the conductance dG,,, = (W/L)Go,,, is 
of order (e2/h)( W/L) in the 2D case and of order (eZ/h)(l,/L) in the 1D case. In 
the latter case, the conductance correction does not scale with the channel 
width W contrary to what one would have classically. The conductance does 
scale with the reciprocal of the channel length L, at least for L >> I,. The factor 
1,/L in 6G,,, in the 1D case can be viewed as a consequence of the classical 
series addition of L/1, channel sections. It will then be clear that the scaling 
with L has to break down when L 5 l,, in which case the weak localization 
correction saturates at its value for L M 1,. The maximum conductance 
correction in a narrow channel is thus of order ez/h, independent of the 
properties of the sample. This “universality” is at  the origin of the pheno- 
menon of the universal conductance fluctuations discussed in Section 7. 

b. Suppression of Weak Localization by u Magnetic Field 

(1) Theory. The resistance enhancement due to weak localization can be 
suppressed by the application of a weak magnetic field oriented per- 
pendicular to the 2DEG. The suppression results from the fact that a 
magnetic field breaks time-reversal invariance. We recall that in a zero 
magnetic field, time-reversal invariance guarantees that trajectories that form 
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a closed loop have equal probability amplitudes A +  and A -  for clockwise 
and counterclockwise propagation around the loop. The resulting con- 
structive interference enhances the backscattering probability, thereby lead- 
ing to the weak localization effect. In a weak magnetic field, however, a phase 
difference 4 develops between A +  and A - ,  even if the curvature of the 
trajectories by the Lorentz force can be totally neglected. This Aharonov- 
Bohm phase results from the fact that the canonical momentum p = mv - eA 
of an electron in a magnetic field contains the vector potential A. On 
clockwise (+) and counterclockwise (-) propagation around a closed loop, 
one thus acquires a phase difference 

The phase difference is twice the enclosed area S divided by the square of the 
magnetic length 1, = (h/eB)’”, or, alternatively, it is 47c times the enclosed 
flux @ in units of the elementary flux quantum Q0 = hfe. 

Many trajectories, with a wide distribution of loop areas, contribute to the 
weak localization effect. In a magnetic field the loops with a large area S k 1; 
no longer contribute, since on average the counterpropagating trajectories no 
longer interfere constructively. Since trajectories enclosing a large area 
necessarily take a long time to complete, the effect of a magnetic field is 
essentially to introduce a long-time cutoff in the integrals of Eqs. (6.2) and 
(6.4), which is the magnetic relaxation time zB.  Recall that the long-time cutoff 
in the absence of a magnetic field is the phase coherence time z+. The 
magnetic field thus begins to have a significant effect on weak localization if 
z B  and zb  are comparable, which occurs at a characteristic field B,. The weak 
localization effect can be studied experimentally by measuring the negative 
magnetoresistance peak associated with its suppression by a magnetic field. 
The significance of such experiments relies on the possibility of directly 
determining the phase coherence time T ~ .  The experimental data are most 
naturally analyzed in terms of the conductance. The magnitude of the zero- 
field conductance correction 6G,,,(B = 0) follows directly from the saturation 
value of the magnetoconductance, according to 

G(B >> B,) - G(B = 0) = -6G,,,(B = 0). (6.6) 

Once 6G,,,(B = 0) is known, one can deduce the phase coherence length 1, 
from Eq. (6.4), since D and z are easily estimated from the classical part of the 
conductance (which dominates at slightly elevated temperatures). The mag- 
netoconductance contains, in addition, information on the channel width % 
which is a parameter difficult to determine otherwise, as will become clear in 
the discussion of the experimental situation in subsection (2). 
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The effectiveness of a magnetic field in suppressing weak localization (as 
contained in the functional dependence of z B  on B, or in the expression for B,) 
is determined by the average flux enclosed by backscattered trajectories of a 
given duration. One can distinguish different regimes, depending on the 
relative magnitude of the channel width W the mean free path 1 = uFz, the 
magnetic length I,, and the phase coherence length I ,  = (Dz,)'''. In Table I1 
the expressions for z, and B, are summarized, as obtained by various 
a ~ t h o r s . ' ~ ~ ~ ' ' ~ ~ ' ~ ~ ~ ' ~ '  In the following, we present a simple physical interpre- 
tation that explains these results, except for the numerical prefactors. We will 
not discuss the effects of spin-orbit scattering' 3 1  or of superconducting 
fluctuations,' 32 since these may be neglected in the systems considered in this 
review. In this subsection we only discuss the dirty metal regime 1 << W The 
pure metal regime 1 >> W in which boundary scattering plays an important 
role, will be discussed in Section 6.c. 

If 1, << W the two-dimensional weak localization correction to the con- 
ductivity applies, given by Eq. (6.4a) for a zero magnetic field. The typical area 
S enclosed by a backscattered trajectory on a time scale zE is then of the order 
S - DT, (assuming diffusive motion on this time scale). The corresponding 
phase shift is $ - DzB/l:, in view of Eq. (6.5). The criteria 4 - 1 and zE - z, 
thus imply 

TABLE 11. MAGNETIC RELAXATION TIME T~ AND CHARACTERISTIC FIELD B,  FOR THE SUPPRESSION 
OF 2D AND 1D WEAK LOCALIZATION.' 

~ 

PURE METAL' (W << I )  
DIRTY  METAL^ ( I  << W) 

1D Strong Field 
2D (l,<< W) 1D (W<<l,) 1D WEAK FIELD (I;>> Wl)  (Wl>>li>> W') 

"All results assume a channel length L >> l,, a channel width W >> I,, as well as z, >> T.  

bFrom Refs. 118, 131, and 121. The diffusion constant D = i u F l .  If W << l,, a transition to 2D 
weak localization occurs when I ,  5 K 
'From Ref. 109. The constants are given by C, = 9.5 and Cz = 24/5 for specular boundary 
scattering (C, = 4x and C, = 3 for a channel with diffuse boundary scattering). For pure metals, 
the case l ,  < W is outside the diffusive transport regime for weak localization. 

131S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980). 
13'A. I. Larkin, Pis'ma Zh. Eksp. Teor. Fiz. 31, 239 (1980) [ J E T P  Lett. 31, 219 (1980)l. 
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The full expression for the magnetoconductance due to weak localization 
is’ 18,131 

(6.8) 

where Y ( x )  is the digamma function and zB = 1:/2D. The digamma function 
has the asymptotic approximation Y(x) z ln(x) - l/x for large x; thus, in a 
zero magnetic field result (6.4a) is recovered (assuming also T+ >> z). In the 
case of 2 D  weak localization the characteristic field B, is usually very weak. 
For example, if I ,  = 1 pm, then B, z 1 mT. The suppression of the weak 
localization effect is complete when zB 5 T ,  which occurs for 
B 2 h/eDz - h/e12. These fields are still much weaker than classically strong 
fields for which W,T 2 1 (as can be verified by noting that when B = h/e12, one 
has W,T = l /kJ << 1). The neglect of the curvature of electron trajectories in 
the theory of weak localization is thus entirely justified in the 2D case. The 
safety margin is narrower in the 1D case, however, since the characteristic 
fields can become significantly enhanced. 

The one-dimensional case W << 1, in a magnetic field has first been treated 
by Al’tshuler and Aronov”’ in the dirty metal regime. This refers to a narrow 
channel with 1 << W so that the wall-to-wall motion is diffusive. Since the 
phase coherence length exceeds the channel width, the backscattered trajec- 
tories on a time scale T~ have a typical enclosed area S - W(DZ,)”~ (see Fig. 
15). Consequently, the condition S - 1: for a unit phase shift implies 

zB N l$/D W 2 ;  B, - file W14. (6.9) 

The difference with the 2 D  case is that the enclosed flux on a given time scale 
is reduced, due to the lateral compression of the backscattered trajectories. 
This leads to an enhancement by a factor l,/W of the characteristic field scale 

t 

Fig. 15. Typical closed electron trajectory contributing to 1D weak localization (I, >> W )  in 
the dirty metal regime (l<< W).  The asterisks denote elastic scattering events. Taken from H. van 
Houten et al., Acta Electronica 28, 27 (1988). 
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B,, compared with Eq. (6.7). The full expression for the weak localization 
correction if l,, 1, >> W >> 1 is'21 

(6.10) 

with zE = 31$/W2D. For an elementary derivation of this result, see Ref. 109. 
At 1, - W a crossover from 1D to 2D weak localization occurs [i.e., from Eq. 
(6.10) to Eq. (6.8)], The reason for this crossover is that the lateral 
confinement becomes irrelevant for the weak localization when I ,  5 W 
because the trajectories of duration zB then have a typical extension 
(DzB)l i2  5 r/c: according to Eq. (6.9). This crossover from 1D to 2D restricts 
the available field range that can be used to study the magnetoconductance 
associated with 1D weak localization. 

The magnetic relaxation time zE in the dirty metal regime is found to be 
inversely proportional to the diffusion constant D, in 2D as well as in 1D. The 
reason for this dependence is clear: faster diffusion implies that less time is 
needed to complete a loop of area 1;. It is remarkable that in the pure metal 
regime such a proportionality no longer holds. This is a consequence of the 
flux cancellation effect discussed in Section 6.c. 

(2) Experiments in the Dirty Metal Regime. Magnetoresistance experiments 
have been widely used to study the weak localization correction to the 
conductivity of wide 2D electron gases in Si28*30,133-135 and GaAs.23*'363137 
Here we will discuss the experimental magnetoresistance studies of weak 
localization in narrow channels in Si MOSFETs34*38s40*'38 and GaAs- 
AlGaAs heterostru~tures.~~*~~*~~ As an illustrative example, we reproduce in 
Fig. 16 a set of experimental results for dR/R  = [R(O) - R(B)]/R(O) obtained 
by Choi et in a wide and in a narrow GaAs-AlGaAs heterostructure. 
The quantity 6 R  is positive, so the resistance decreases on applying a 
magnetic field. The 2D results are similar to those obtained earlier by 
Paalanen et ~ 1 . ' ~ ~  The qualitative difference in field scale for the suppression 
of 2D (top) and 1D (bottom) weak localization is nicely illustrated by the data 
in Fig. 16. The magnetoresistance peak is narrower in the 2D case, consistent 
with the enhancement in 1D of the characteristic field B, for the suppression 
of weak localization, which we discussed in Section 6.b(l). The solid curves in 

"'Y. Kawaguchi and S. Kawaji, J .  Phys. SOC. Jpn. 48, 699 (1980). 
134R. G. Wheeler, Phys. Rev. B 24, 4645 (1981). 
13'M. J. Uren, R. A. Davis, M. Kaveh, and M. Pepper, J .  Phys. C 14, L395 (1981). 
136D. A. Poole, M. Pepper, and R. W. Glew, J .  Phys. C 14, L995 (1981). 
I3'M. A. Paalanen, D. C. Tsui, and J. C. M. Hwang, Phys. Rev. Lett. 51, 2226 (1983). 
13'D. M. Pooke, R. Mottahedeh, M. Pepper, and A. Grundlach, Surf: Sci. 196, 59 (1988); D. M. 

Pooke, N. Paquin, M. Pepper, and A. Grundlach, J .  Phys. Condens. Matter 1, 3289 (1989). 
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.O 
B(G) 

FIG. 16. A comparison between the magnetoresistance AR/R = [R(O) - R(B)]/R(O) due to 2D 
weak localization in a wide channel (upper panel) and due to 1D weak localization in a narrow 
channel (lower panel), at various temperatures. The solid curves are fits based on Eqs. (6.8) and 
(6.10). Taken from K. K.  Choi et al., Phys. Reu. B 36, 7751 (1987). 

Fig. 16 were obtained from the 2D theoretical expression (6.8) and the ID 
dirty metal result (6.10), treating W and l4 as adjustable parameters. A 
noteworthy finding of Choi et al.” is that the effective channel width W is 
considerably reduced below the lithographic width wit,, in narrow channels 
defined by a deep-etched mesa (as in Fig. 4a). Differences W - Fit,, of about 
0.8 pm were found.25 Significantly smaller differences are obtained27v63 if a 
shallow-etched mesa is used for the lateral confinement, as in Fig. 4c. A split- 
gate device (as in Fig. 4b) of variable width has been used by Zheng et to 
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study weak localization in GaAs-AIGaAs heterostructure channels. Magne- 
toresistance experiments in a very narrow split-gate device (fabricated using 
electron beam lithography) were reported by Thornton et ~ 1 . ~ ~  and analyzed 
in terms of the dirty metal theory. Unfortunately, in their experiment the 
mean free path of 450nm exceeded the width inferred from a fit to Eq. (6.10) 
by an order of magnitude, so an analysis in terms of the pure metal theory 
would have been required. 

Early magnetoresistance experiments on narrow Si accumulation layers 
were performed by Dean and Pepper,34 in which they observed evidence for a 
crossover from the 2D to the 1D weak localization regime. A comparison of 
weak localization in wide and narrow Si inversion layers was reported by 
Wheeler et aL3* The conducting width of the narrow channel was taken to be 
equal to the lithographic width of the gate (about 400nm), while the mean 
free path was estimated to be about 100nm. This experiment on a low- 
mobility Si channel thus meets the requirement I << W for the dirty metal 
regime. The 1D weak localization condition I ,  >> W was only marginally 
satisfied, however. Licini et aL4’ reported a negative magnetoresistance peak 
in 270-nm-wide Si inversion layers, which was well described by the 2D 
theory at a temperature of 2.2 K, where 1, = 120 nm. Deviations from the 2D 
form were found at lower temperatures, but the 1D regime was never fully 
entered. A more recent study of 1D weak localization in a narrow Si 
accumulation layer has been performed by Pooke et ~ 1 . l ~ ~  at  low temper- 
atures, and the margins are somewhat larger in their case. 

We note a difficulty inherent to experiments on 1D weak localization in 
semiconductor channels in the dirty metal regime. For 1D weak localization 
it is required that the phase coherence length 1, is much larger than the 
channel width. If the mean free path is short, then the experiment is in the 
dirty metal regime 1 << u! but the localization will be only marginally one- 
dimensional since the phase coherence length I ,  = (DZ,)’/’ = (u,l~,/2)”~ will 
be short as well (except for the lowest experimental temperatures). If the mean 
free path is long, then the 1D criterion I ,  >> W is easily satisfied, but the 
requirement 1 << W will now be hard to meet so that the experiment will tend 
to be in the pure metal regime. A quantitative comparison with the theory 
(which would allow a reliable determination of I,) is hampered because the 
asymptotic regimes studied theoretically are not accessible experimentally 
and because the channel width is not known a priori. Nanostructures are thus 
not the best candidates for a quantitative study of the phase coherence length, 
which is better studied in 2D systems. An altogether different complication is 
that quantum corrections to the conductivity in semiconductor nanostruc- 
tures can be remarkably large (up to 100% at sufficiently low temper- 
a t u r e ~ ~ ’ - ~ ~ ) ,  which puts them beyond the range of validity of the perturbation 
theory. 
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FIG. 17. Illustration of the flux cancellation effect for a closed trajectory of one electron in a 
narrow channel with diffuse boundary scattering. The trajectory is composed of two loops of 
equal area but opposite orientation, so it encloses zero flux. Taken from C. W. J. Beenakker and 
H. van Houten, Phys. Reo. B. 38, 3232 (1988). 

c. Boundary Scattering and Flux Cancellation 

(1)Theory. In the previous subsection we noticed that the pure metal 
regime, where 1 >> is characteristic for 1D weak localization in semicon- 
ductor nanostructures. This regime was first theoretically considered by 
Dugaev and Khmel'nitskii,12' for the geometry of a thin metal film in a 
parallel magnetic field and for diffuse boundary scattering. The geometry of a 
narrow 2DEG channel in a perpendicular magnetic field, with either diffuse 
or specular boundary scattering, was treated by the present  author^.'^' Note 
that the nature of the boundary scattering did not play a role in the dirty 
metal regime of Section 6.b, since there the channel walls only serve to impose 
a geometrical restriction on the lateral diffusion.12 The flux cancellation 
effect is characteristic of the pure metal regime, where the electrons move 
ballistically from one wall to the other. This effect (which also plays a role in 
the superconductivity of thin films in a parallel magnetic field'22) leads to a 
further enhancement of the characteristic field scale B, .  Flux cancellation 
results from the fact that typically backscattered trajectories for 1 >> W self- 
intersect (cf. Fig. 17) and are thus composed of smaller loops that are 
traversed in opposite directions. Zero net flux is enclosed by closed trajec- 
tories involving only wall collisions (as indicated by the shaded areas in Fig. 
17, which are equal but of opposite orientation), so impurity collisions are 
required for phase relaxation in a magnetic field. This is in contrast to the 
dirty metal regime considered before, where impurity scattering hinders 
phase relaxation by reducing the diffusion constant. The resulting nonmono- 
tonous dependence of phase relaxation on impurity scattering in the dirty 
and pure metal regimes is illustrated in Fig. 18, where the cal~ulated' '~ 
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FIG. 18. Phase relaxation time zB in a channel with specular boundary scattering, as a function 

of the elastic mean free path 1. The plot has been obtained by a numerical simulation of the phase 
relaxation process for a magnetic field such that I, = 10W The dashed lines are analytic 
formulas valid in the three asymptotic regimes (see Table 11). Taken from C. W. J. Beenakker and 
H. van Houten, Phys. Rev. B 38, 3232 (1988). 

magnetic relaxation time zE is plotted as a function of l/W for a fixed ratio 
4lIW 

Before continuing our discussion of the flux cancellation effect, we give a 
more precise definition of the phase relaxation time zB.  The effect of a 
magnetic field on weak localization is accounted for formally by inserting the 
term 

(6.1 1) 

in the integrand of Eq. (6.2). The term (6.11) is the conditional average over all 
closed trajectories having duration t of the phase factor e'@('), with 4 the phase 
difference defined in Eq. (6.5). It can be shown109 that in the case of 1D weak 
localization (and for I ,  >> W),  this term is given by an exponential decay 
factor exp( - t /zE) ,  which defines the magnetic relaxation time zB.  In this 
regime the weak localization correction to the conductivity in the presence of 
a magnetic field is then simply given by Eq. (6.4b), after the substitution 

7;' + 2;' + zg1. (6.12) 

(e'"')lr(t) = r(0)) = e-*/ 'B,  W << (,,, I , ,  

Explicitly, one obtains 

(6.13) 
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One can see from Fig. 18 and Table 11 that in the pure metal regime 1 >> W, 
a weak and strong field regime can be distinguished, depending on the ratio 
Wl/l;. This ratio corresponds to the maximum phase change on a closed 
trajectory of linear extension 1 (measured along the channel). In the weak field 
regime (Wl/I; << 1) many impurity collisions are required before a closed 
electron loop encloses sufficient flux for complete phase relaxation. In this 
regime a further increase of the mean free path does not decrease the phase 
relaxation time (in contrast to the dirty metal regime), because as a 
consequence of the flux cancellation effect, faster diffusion along the channel 
does not lead to a larger enclosed flux. On comparing the result in Table I1 
for B, in the weak field regime with that for the dirty metal regime, one sees an 
enhancement of the characteristic field by a factor (l/W)'". The strong field 
regime is reached if Wl/l; >> 1, while still 1, >> W Under these conditions, a 
single impurity collision can lead to a closed trajectory that encloses sufficient 
flux for phase relaxation. The phase relaxation rate l/z, is now proportional 
to the impurity scattering rate l/z and, thus, to 1/1. The relaxation time Z, 
accordingly increases linearly with 1 in this regime (see Fig. 18). For 
comparison with experiments in the pure metal regime, an analytic formula 
that interpolates between the weak and strong field regimes is useful. The 
following formula agrees well with numerical ca l cu la t i~ns : '~~  

zB = Z;eak + z;rong. (6.14) 

Here tyak and z r n g  are the expressions for Z, in the asymptotic weak and 
strong field regimes, as given in Table 11. 

So far, we have assumed that the transport is diffusive on time scales 
corresponding to z+. This will be a good approximation only if z+ >> z. 
Coherent diffusion breaks down if z+ and z are of comparable magnitude (as 
may be the case in high-mobility channels). The modification of weak 
localization as one enters the ballistic transport regime has been investigated 
by Wittmann and S~hrnid.'~' It would be of interest to see to what extent the 
ad hoc short-time cutoff introduced in our Eq. (6.4), which is responsible for 
the second bracketed term in Eq. (6.13), is satisfactory. 

(2)Experiments in the Pure Metal Regime. Because of the high mobility 
required, the pure metal regime has been explored using GaAs- AlGaAs 
heterostructures only. The first experiments on weak localization in the pure 
metal regime were done by Thornton et ~ l . , ~ *  in a narrow split-gate device, 
although the data were analyzed in terms of the theory for the dirty metal 
regime. An experimental study specifically aimed at weak localization in the 
pure metal regime was reported in Refs. 26 and 27. In a narrow channel 
defined by the shallow-mesa etch technique of Fig. 4c (with a conducting 
width estimated at 0.12 pm), a pronounced negative magnetoresistance effect 
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FIG. 19. Magnetoconductance due to 1D weak localization in the pure metal regime 

( W =  120nm, L= 350nm). The solid curves are one-parameter fits to Eq. (6.13). Only the field 
range I, > W is shown in accordance with the condition of coherent diffusion imposed by the 
theory. The phase coherence length I, obtained from the data at various temperatures is 
tabulated in the inset. Taken from H. van Houten et al., Surf. Sci. 196, 144 (1988). 

was found, similar to that observed by Thornton et  ~ 1 . ' ~  A good agreement of 
the experimental results with the theory"' for weak localization in the pure 
metal regime was obtained (see Fig. 19), assuming specular boundary 
scattering (diffuse boundary scattering could not describe the data). The 
width deduced from the analysis was consistent with independent estimates 
from other magnetoresistance effects. Further measurements in this regime 
were reported by Chang et  uZ.70*139 and, more recently, by Hiramoto et  dS1 
These experiments were also well described by the theory of Ref. 109. 

7. CONDUCTANCE FLUCTUATIONS 

Classically, sample-to-sample fluctuations in the conductance are neg- 
ligible in the diffusive (or quasi-ballistic) transport regime. In a narrow- 
channel geometry, for example, the root-mean-square 6C,,,, of the classical 
fluctuations in the conductance is smaller than the average conductance (C) 
by a factor (l/L)''', under the assumption that the channel can be subdivided 
into L/1>> 1 independently fluctuating segments. As we have discussed in the 

'39A. M. Chang, G. Timp, R. E. Howard, R. E. Behringer, P. M. Mankiewich, J. E. Cunningham, 
T. Y. Chang, and B. Chelluri, Superlattices and Microstructures, 4, 515 (1988). 
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previous section, however, quantum mechanical correlations persist over a 
phase coherence length I ,  that can be much larger than the elastic mean free 
path 1. Quantum interference effects lead to significant sample-to-sample 
fluctuations in the conductance if the size of the sample is not very much 
larger than 1,. The Al'tshuler-Lee-Stone theory of Universal Conductance 
F l u c t ~ a t i o n s ' ~ ~ ~ ' ~ ~  find s that SG z e2/h  at T =  0, when phase coherence is 
maintained over the entire sample. Since ( G )  cc L-l, it follows that 
b G / ( G )  cc L increases with increasing channel length; that is, there is a total 
absence of self-averaging. 

Experimentally, the large sample-to-sample conductance fluctuations 
predicted theoretically are difficult to study in a direct way, because of 
problems in the preparation of samples that differ in impurity configuration 
only (to allow an ensemble average). The most convenient way to study the 
effect is via the fluctuations in the conductance of a single sample as a 
function of magnetic field, because a small change in field has a similar effect 
on the interference pattern as a change in impurity configuration. Sections 7.c 
and 7.d deal with theoretical and experimental studies of magnetoconduc- 
tance fluctuations in narrow 2DEG channels, mainly in the quasi-ballistic 
regime characteristic for semiconductor nanostructures. In Sections 7.a and 
7.b we discuss the surprising universality of the conductance fluctuations at 
zero temperature and the finite-temperature modifications. 

a. Zero-Temperature Conductance Fluctuations 

The most surprising feature of the conductance fluctuations is that their 
magnitude at zero temperature is of order e2/h, regardless of the size of the 
sample and the degree of provided at least that L >> I ,  so that 
transport through the sample is diffusive (or possibly quasi-ballistic). Lee and 
Stone14' coined the term Universal Conductance Fluctuations (UCF) for this 
effect. In this subsection we give a simplified explanation of this universality 
due to Lee.'42 

Consider first the classical Drude conductance (4.8) for a single spin 
direction (and a single valley): 

The number N equals the number of transverse modes, or one-dimensional 
subbands, that are occupied at the Fermi energy in a conductor of width W 
We have written the conductance in this way to make contact with the 

I4*B. L. Al'tshuler, Pis'ma Zh. Eksp. Teor. Fiz. 41, 530 (1985) [ J E T P  Lett. 41, 648 (1985)l. 
I4'P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985). 
142P. A. Lee, Physica 140A, 169 (1986). 
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FIG. 20. Idealized conductor connecting source (S) and drain (D) reservoirs and containing a 
disordered region (crosshatched). The incoming quantum channels (or transverse waveguide 
modes) are labeled by a, the transmitted and backscattered channels by 8. 

Landauer approach4 to conduction, which relates the conductance to the 
transmission probabilities of modes at the Fermi energy. (A detailed 
discussion of this approach is given the context of quantum ballistic transport 
in Section 12.b). The picture to have in mind is shown in Fig. 20. Current is 
passed from a source reservoir S to a drain reservoir D, through a disordered 
region (hatched) in which only elastic scattering takes place. The two 
reservoirs are in thermal equilibrium and are assumed to be fully effective in 
randomizing the phase via inelastic scattering, so there is no phase coherence 
between the N modes incident on the disordered region. The modes in this 
context are called quantum channels. If L >> 1, each channel has on average the 
same transmission probability, given by d/2L according to Eqs. (4.21) and 
(7.1). We are interested in the fluctuations around this average. The resulting 
fluctuations in G then follow from the multichannel Landauer 
formula1.143,144 

where tpa denotes the quantum mechanical transmission probability 
amplitude from the incident channel c( to the outgoing channel j (cf. Fig. 20). 
The ensemble averaged transmission probability ( l t , , f )  does not depend on 
LY or 8, so the correspondence between Eqs. (7.1) and (7.2) requires 

( l t , p 1 2 )  = z1/2NL. (7.3) 

The magnitude of the conductance fluctuations is characterized by its 
variance Var(C) = ((C - (G))’). As discussed by Lee, a difficulty arises in a 
direct evaluation of Var(G) from Eq. (7.2), because the correlation in the 
transmission probabilities ItUpJ2 for different pairs of incident and outgoing 
channels a, may not be neg1e~ted.I~’ The reason is presumably that 
transmission through the disordered region involves a large number of 
impurity collisions, so a sequence of scattering events will in general be 

143D. S. Fisher and P. A. Lee, Phys. Reo. B 23, 6851 (1981). 
144A. D. Stone. in Ref. 14. 
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shared by different channels. On the same grounds, it is reasonable to assume 
that the reflection probabilities Ir,p12 for different pairs UP of incident and 
reflected channels are uncorrelated, since the reflection back into the source 
reservoir would seem to be dominated by only a few scattering events.’42 
(The formal diagrammatic analysis of Refs. 140 and 141 is required here for a 
convincing argument.) The reflection and transmission probabilities are 
related by current conservation 

so the variance of the conductance equals 

assuming uncorrelated reflection probabilities. A large number M of scatter- 
ing sequences through the disordered region contributes with amplitude 
A(i) (i = 1, 2, . . . , M )  to the reflection probability amplitude rap. (The dif- 
ferent scattering sequences can be seen as independent Feynman paths 
in a path integral formulation of the problem.’42) To calculate 
Var((r,o12) = - (Ir,p12)2, one may then write (neglecting correlations 
in A(i) for different i) 

M 

i .  j . k , l =  1 
= C (A*(i)A(j)A*(k)A(O) 

where we nave neglected terms smaller by a factor 1/M (assuming M >> 1). 
One thus finds that the variance of the reflection probability is equal to the 
square of its average: 

Var(lrap12) = (lrap12)2. (7.7) 

The average reflection probability (lr,,J2) does not depend on ci and fi. Thus, 
from Eqs. (7.3) and (7.4) it follows that 

(1ra81’) = W 1 ( l  - order(l/L)). (7.8) 

Combining Eqs. ( 7 4 ,  (7.7), and (7.8), one obtains the result that the zero- 
temperature conductance has a variance (e’/h)’, independent of I or L (in the 
diffusive limit 1 << L). We have discussed this argument of Lee in some detail, 
because no other simple argument known to us gives physical insight in this 
remarkable result. 
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The numerical prefactors follow from the diagrammatic analy- 
The result of Lee and Stone141 for the root-mean-square 

magnitude of the conductance fluctuations at  T =  0 can be written in the 
form 

sis. 140,141,145,146 

Here C is a constant that depends on the shape of the sample. Typically, C is 
of order unity; for example, C z 0.73 in a narrow channel with L >> W 
(However, in the opposite limit W >> L of a wide and short channel, C is of 
order (W/L)'l2.) The parameter j = 1 in a zero magnetic field when time- 
reversal symmetry holds; B = 2 when time-reversal symmetry is broken by a 
magnetic field. The factor gsgy assumes complete spin and valley degeneracy. 
If the magnetic field is sufficiently strong that the two spin directions give 
statistically independent contributions to the conductance, then the variances 
add so that the factor gs in 6G is to be replaced by a factor g:/'. We will return 
to this point in Section 7.d. 

b. Nonzero Temperatures 

At nonzero temperatures, the magnitude of the conductance fluctuations is 
reduced below 6G z e2/h. One reason is the effect of a finite phase coherence 
length I ,  = ( 0 ~ ~ ) ~ " ;  another is the effect of thermal averaging, as expressed by 
the thermal length I ,  = (hD/k,T)'/'. The effect of a finite temperature, 
contained in 1, and I,, is to partially restore self-averaging, albeit that the 
suppression of the fluctuation with sample size is much weaker than would be 
the case classically. The theory has been presented clearly and in detail by 
Lee, Stone, and F ~ k u y a m a . ' ~ ~  We limit the present discussion to the 1D 
regime W << 1, << L, characteristic for narrow 2DEG channels. 

The effects of thermal averaging may be neglected if 1, << I ,  (see below). 
The channel may then be thought to be subdivided in uncorrelated segments 
of length 1,. The conductance fluctuation of each segment individually will be 
of order e2/h, as it is at zero temperature. The root-mean-square conductance 
fluctuation of the entire channel is easily estimated. The segments are in 
series, so their resistances add according to Ohm's law. We denote the 
resistance of a channel segment of length 1, by R , .  The variance of R ,  is 
Var(Rl) % (Rl)4Var(R;') z (R, )4(e2/h)2 .  The average resistance of the 
whole channel ( R )  = (L / l , ) (R l )  increases linearly with the number L/1, of 
uncorrelated channel segments, just as its variance Var(R) = 

14'P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, I039 (1987). 
L46B. L. Al'tshuler and D. E. Khmel'nitskii, Pis'ma Zh. Eksp. Teor. Fiz. 42,291 (1985) [JETP Lett. 

42, 359 (1985)l. 
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(L/I+)Var(R,) % (L/1+)(R,)4(e2/h)2. (The root-mean-square resistance fluc- 
tuation thus grows as (L/l+)1/2, the square root of the number of channel 
segments in series.) Expressed in terms of a conductance, one thus has 
Var(G) % (R)-4Var(R) z (ls/L)3(eZ/h)2, or 

SG = constant x - (!$3’2, if 1+ << 1,. (7.10) 

The constant prefactor is given in Table 111. 
We now turn to the second effect of the finite temperature, which is the 

smearing of the fluctuations by the energy average within an interval of order 
k,T around the Fermi energy E,. Note that we did not have to consider this 
thermal averaging in the context of the weak localization effect, since that is 
a systematic, rather than a fluctuating, property of the sample. Two inter- 
fering Feynman paths, traversed with an energy difference 6E, have to be con- 
sidered as uncorrelated after a time t,, if the acquired phase difference t,GE/h 
is of order unity. In this time the electrons diffuse a distance 
L, = (Dt,)”’ - (hD/SE)l/’. One can now define a correlation energy E,(L,), 
as the energy difference for which the phase difference following diffusion over 
a distance L ,  is unity: 

E,(L,) = hD/L:. (7.1 1) 

The thermal length 1, is defined such that E c ( l T )  = k,7: which implies 

I ,  = (hD/keT)’ /2 .  (7.12) 

TABLE 111. ASYMPTOTIC EXPRFSSIONS FOR THE ROOT-MEAN-SQUARE 
CONDUCTANCE FLUCITJATIONS IN A NARROW CHANNEL.’ 

T > O  
T = O  

IT, 1, >> L 1, << L, I ,  1, << 1, << L 

C 0.73 Ji5 (y’ 
“The results assume a narrow channel (W << L), with a 2D density of 
states (W >> ,IF), which is in the 1D limit for the conductance fluctua- 
tions (W << l,). The expressions for 6G are from Refs. 140, 141, 145, and 
146. The numerical prefactor C for T =  0 is from Ref. 141, for T > 0 
from Ref. 147. If time-reversal symmetry applies, then = 1, but in the 
presence of a magnetic field strong enough to suppress the cooperon 
contributions then = 2. If the spin degeneracy is lifted, g, is to be 
replaced by gf’*. 
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(Note that this definition of I ,  differs by a factor of (27c)'/' from that in Ref. 
145.) The thermal smearing of the conductance fluctuations is of importance 
only if phase coherence extends beyond a length scale IT (i.e., if I ,  >> IT). In this 
case the total energy interval k,T around the Fermi level that is available for 
transport is divided into subintervals of width E,(l+) = h / ~ +  in which phase 
coherence is maintained. There is a number N % k,T/E,(l,) of such subinter- 
vals, which we assume to be uncorrelated. The root-mean-square variation 
6G of the conductance is then reduced by a factor N - ' l 2  z IT&, with respect 
to the result (7.10) in the absence of energy averaging. (A word of caution: as 
discussed in Ref. 145, the assumption of N uncorrelated energy intervals is 
valid in the 1D case W << 1, considered here, but not in higher dimensions.) 
From the foregoing argument it follows that 

(7.13) 

The asymptotic expressions (7.10) and (7.13) were derived by Lee, Stone, 
and F ~ k u y a m a ' ~ ~  and by Al'tshuler and Khmel 'n i t~ki i '~~  up to unspecified 
constant prefactors. These constants have been evaluated in Ref. 147, and are 
given in Table 111. In that paper we also gave an interpolation formula 

with p defined in the previous subsection. This formula is valid (within 10% 
accuracy) also in the intermediate regime when I ,  % I,, and is useful for 
comparison with experiments, in which generally 1, and I ,  are not well 
separated (cf. Table I). 

C .  Magnetoconductance Fluctuations 

Experimentally, one generally studies the conductance fluctuations result- 
ing from a change in Fermi energy EF or magnetic field B rather than from a 
change in impurity configuration. A comparison with the theoretical en- 
semble average becomes possible if one assumes that, insofar as the 
conductance fluctuations are concerned, a sufficiently large change in EF or B 
is equivalent to a complete change in impurity configuration (this "ergodic 
hypothesis" has been proven in Ref. 148). The reason for this equivalence is 
that, on one hand, the conductance at EF + AE, and B + AB is uncorrelated 
with that at E ,  and B, provided either AEF or AB is larger than a correlation 
energy AE, or correlation field AB,. On the other hand, the correlation 
energies and fields are in general sufficiently small that the statistical 
properties of the ensemble are not modified by the increment in E,  or B, so 
one is essentially studying a new member of the same ensemble, without 
changing the sample. 
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This subsection deals with the calculation of the correlation field ABc. (The 
correlation energy is discussed in Ref. 145 and will not be considered here.) 
The magnetoconductance correlation function is defined as 

F(AB) ( [6G(B)  - (G(B))][G(B + AB) - (G(B  + AB))]), 

(7.15) 

where the angle brackets (...) denote, as before, an ensemble average. The 
root-mean-square variation 6G considered in the previous two subsections is 
equal to F(0)'l2. The correlation field ABC is defined as the half-width at  half- 
height FfAB,) = F(0)/2. The correlation function F(AB) is determined 
t h e o r e t i ~ a l l y ' ~ ~ * ' ~ ~ . ' ~ ~  by temporal and spatial integrals of two propagators: 
the dzfluson Pd(r, r', t )  and the cooperon Pc(r, r', t). As discussed by Chakrav- 
arty and Schmid,lZ6 these propagators consist of the product of three terms: 
(1) the classical probability to diffuse from r to r' in a time t (independent of B 
in the field range oC7 << 1 of interest here); (2) the relaxation factor exp( - t/7,), 

which describes the loss of phase coherence due to inelastic scattering events; 
(3) the average phase factor (exp(iAq5)), which describes the loss of phase 
coherence due to the magnetic field. The average (...) is taken over all 
classical trajectories that diffuse from r to r' in a time t. The phase difference 
A 4  is different for a diffuson or cooperon: 

A$(diffuson) = - AA - dl, (7.16a) 
h J; 
h 1: A4(cooperon) = - (2A + AA) * dl, (7.16b) 

where the line integral is along a classical trajectory. The vector potential A 
corresponds to the magnetic field B = V x A, and the vector potential 
increment AA corresponds to the field increment AB in the correlation 
function F(AB) (according to AB = V x AA). An explanation of the different 
magnetic field dependencies of the diffuson and cooperon in terms of 
Feynman paths is given shortly. 

In Ref. 109 we have proven that in a narrow channel (W << 1,) the average 
phase factor (exp(iA4)) does not depend on initial and final coordinates r 
and r', provided that one works in the Landau gauge and that t >> z. This is a 
very useful property, since it allows one to transpose the results for 
(exp(iAq5)) obtained for r = r' in the context of weak localization to the 
present problem of the conductance fluctuations, where r can be different 
from r'. We recall that for weak localization the phase difference A$ is that of 
the cooperon, with the vector potential increment AA = 0 [cf. Eq. (6.5)]. The 
average phase factor then decays exponentially as (exp(iAq5)) = exp(- t /zB) 
[cf. Eq. (6.11)], with the relaxation time zB given as a function of magnetic 
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field Bin Table 11. We conclude that the same exponential decay holds for the 
average cooperon and diffuson phase factors after substitution of 
E -, B + AB/2 and B -, AB/2,  respectively, in the expressions for z,: 

(eiAo)(diffuson) = exp (- t / ~ ~ , , ~ ) ,  (7.17a) 

(eiA@)(cooperon) = exp( - t / ~ , + ~ , / ~ ) .  (7.17b) 

The cooperon is suppressed when z,+,,,~ 5 z+, which occurs on the same 
field scale as the suppression of weak localization (determined by z, 5 zo). 
The suppression of the cooperon can be seen as a consequence of the 
breaking of the time-reversal invariance by the magnetic field, similar to the 
suppression of weak localization. In a zero field the cooperons and the 
diffusons contribute equally to the variance of the conductance; therefore, 
when the cooperon is suppressed, Var(G) is reduced by a factor of 2. (The 
parameter f i  in Table I11 thus changes from 1 to 2 when B increases beyond 
Ec.)  In general, the magnetoconductance fluctuations are studied for B > B, 
(i.e., for fields beyond the weak localization peak). Then only the diffuson 
contributes to the conductance fluctuations, since the relaxation time of the 
diffuson is determined by the field increment A B  in the correlation function 
F(AB), not by the magnetic field itself. This is the critical difference with weak 
localization: The conductance fluctuations are not suppressed by a weak 
magnetic field. 141,146 The different behavior of cooperons and diffusons can 
be understood in terms of Feynman paths. The correlation function F(AB) 
contains the product of four Feynman path amplitudes A(i ,B) ,  A*(j ,B) ,  
A(k, B + AB), and A*(l, B + AB) along various paths i, j ,  k,  1 from r to r'. 
Consider the diffuson term for which i = 1 a n d j  = k .  The phase of this term 
A(i, B)A*(j ,  B)A( j ,  B + AB)A*(i, B + AB) is 

(7.18) 

where the line integral is taken along the closed loop formed by the two paths 
i and j (cf. Fig. 21a). The phase is thus given by the flux increment A@ = S A B  
through this loop and does not contain the flux @ = SB itself. The fact that 
the magnetic relaxation time of the diffuson depends only on A B  and not on B 
is a consequence of the cancellation contained in Eq. (7.18). For the cooperon, 
the relevant phase is that of the product of Feynman path amplitudes 
A - ( i ,  B)A*(j, B ) A + ( j ,  B + AB)AT(i, B + AB), where the - sign refers to a 
trajectory from r' to r and the + sign to a trajectory from r to r' (see Fig. 21 b). 
This phase is given by 

" " 
$,.dl + ;$(A + A A ) - d l  = - e (2@ + A@).  

h h 
(7.19) 
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FIG 21. Illustration of the different flux sensitivity of the interference terms of diffuson type 
(a) and of cooperon type (b). Both contribute to the conductance fluctuations in a zero magnetic 
field, but the cooperons are suppressed by a weak magnetic field, as discussed in the text. 

In contrast to the diffuson, the cooperon is sensitive to the flux @ through the 
loop and can therefore be suppressed by a weak magnetic field. 

In the following, we assume that B > B,  so that only the diffuson 
contributes to the magnetoconductance fluctuations. The combined effects of 
magnetic field and inelastic scattering lead to a relaxation rate 

ze;; = z; + (7.20) 

which describes the exponential decay of the average phase factor 
(eiA4) = exp(-t/z,,,). Equation (7.20) contains the whole effect of the 
magnetic field on the diffuson. Without having to do  any diagrammatic 
analysis, we therefore conclude'47 that the correlation function F(AB) can be 
obtained from the variance F(0)  = Var G = (6G)' (given in Table 111) by 
simply replacing z4 by the effective relaxation time zeff defined in Eq. (7.20). 
The quantity zABi2 corresponds to the magnetic relaxation time zB obtained 
for weak localization (see Table 11) after substitution of B + AB/2. For easy 
reference, we give the results for the dirty and clean metal regimes 
e ~ p l i c i t l y : ' ~ ~ . ' ~ ~  

(7.21) 

if 1 >> W (7.22) 
2 1  1 

zAB/2  = 4c1 (&) + 2c2 

'*'C. W. J. Beenakker and H. van Houten, Phys. Rev. B 37, 6544 (1988). 
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2 -  

0 

where C, = 9.5 and C, = 2415 for a channel with specular boundary 
scattering (C, = 41t and C ,  = 3 for a channel with diffuse boundary scatter- 
ing). These results are valid under the condition W 2  AB << h/e, which follows 
from the requirement reff >> x that the electronic motion on the effective phase 
coherence time scale reff be diffusive rather than ballistic, as well as from the 
requirement (Dr,,f)1i2 >> W for one-dimensionality. 

With results (7.20)-(7.22), the equation F(ABc) = F(0)/2, which defines the 
correlation field ABc,  reduces to an algebraic equation that can be solved 
straightforwardly. In the dirty metal regime one finds'45 

Diffusive -~~ ~ _ _ ~ ~ _ _  

I I I I 

h 1  
e Wl, 

ABc = 21tC - -, (7.23) 

where the prefactor C decreases from147 0.95 for 1, >> 1, to 0.42 for 1, << 1,. 
Note the similarity with the result (6.9) for weak localization. Just as in weak 
localization, one finds that the correlation field in the pure metal regime is 
significantly enhanced above Eq. (7.23) due to the flux cancellation effect 
discussed in Section 6.c. The enhancement factor increases from ( l /W)1/2 to 
1/W as 1, decreases from above to below the length 13/2W-1/2. The relevant 
expression is given in Ref. 147. As an illustration, the dimensionless 
correlation flux ABc Wl,e/h in the pure and dirty metal regimes is plotted as a 
function of 1,/1 in Fig. 22 for 1, << 1,. 

In the following discussion of the experimental situation in semiconductor 
nanostrucrures, it is important to keep in mind that the Al'tshuler-Lee- 
Stone theory of conductance fluctuations was formulated for an application 

8 c 
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to metals. This has justified the neglect of several possible complications, 
which may be important in a 2DEG. One of these is the classical curvature of 
the electron trajectories, which affects the conductance when lcycl 5 min(W 1). 
A related complication is the Landau level quantization, which in a narrow 
channel becomes important when 1, 5 W Furthermore, when W -  ,IF the 
lateral confinement will at  low fields induce the formation of 1D subbands. 
No quantization effects are taken into account in the theory of conductance 
fluctuations discussed before. Finally, the present theory is valid only in the 
regime of coherent diffusion (z+, zeff 2 7). In high-mobility samples zg and z 
may be comparable, however, as discussed in Section 7.d. It would be of 
interest to study the conductance fluctuations in this regime theoretically. 

In the following discussion of experimental studies of conductance 
fluctuations, we will have occasion to discuss briefly one further development. 
This is the modification of the t h e ~ r y ' ~ ~ - ' ~ ~  to account for the differences 
between two- and four-terminal measurements of the conductance fluctua- 
tions, which becomes important when the voltage probes are separated by 
less than the phase coherence length.'55.156 

d. Experiments 

The experimental observation of conductance fluctuations in semicon- 
ductors has preceded the theoretical understanding of this phenomenon. 
Weak irregular conductance fluctuations in wide Si inversion layers were 
reported in 1965 by Howard and Fang.'57 More pronounced fluctuations 
were found by Fowler et al. in narrow Si accumulation layers in the strongly 
localized regime.32 Kwasnick et al. made similar observations in narrow Si 
inversion layers in the metallic conduction regime.39 These fluctuations in the 
conductance as a function of gate voltage or magnetic field have been 
tentatively explained by various mechanisms.' 58 One of the explanations 
suggested is based on resonant t ~ n n e l i n g , ' ~ ~  another on variable range 
hopping.'60 At the 1984 conference on "Electronic Properties of Two- 

148B. L. Al'tshuler, V. E. Kravtsov, and I. V. Lerner, Pis'ma Zh. Eksp. Teor. Fiz. 43, 342 (1986) 

i49M. Buttiker, Phys. Rev. B 35, 4123 (1987). 
IS'S. Maekawa, Y. Isawa, and H. Ebisawa, J .  Phys. Soc. Jpn. 56, 25 (1987). 
l S I H .  U. Baranger, A. D. Stone, and D. P. DiVincenzo, Phys. Rev. B 37, 6521 (1988). 
"*S. Hershfield and V. Ambegaokar, Phys. Rev. B 38, 7909 (1988). 
IS3C. L. Kane, P. A. Lee, and D. P. DiVincenzo, Phys. Rev. B 38,2995 (1988). 
lS4D. P. DiVincenzo and C. L. Kane, Phys. Rev. B 38, 3006 (1988). 
IS5A. D. Benoit, C. P. Umbach, R. B. Laibowitz, and R. A. Webb, Phys. Rev. Letr. 58,2343 (1987). 
IS6W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, D. M. Tennant, and A. D. 

I5'W. E. Howard and F. F. Fang, Solid State Electronics 8, 82 (1965). 
''*A. Hartstein, R. A. Webb, A. B. Fowler, and J. J. Wainer, Surf: Sci. 142, 1 (1984). 
IsSM. Ya. Azbel, Phys. Rev. B 28, 4106 (1983). 
I6OP.  A. Lee, Phys. Rev. Lett. 53, 2042 (1984). 

[JETP Lett. 43, 441 (1986)l. 

Stone, Phys. Rev. Lett. 58, 2347 (1987). 
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FIG. 23. Negative magnetoresistance and aperiodic magnetoresistance fluctuations in a 
narrow Si inversion layer channel for several values of the gate voltage V,. Note that the vertical 
offset and scale is different for each V,. Taken from J. C. Licini et nl., Phys. Rev. Lett. 55, 2987 
(1985). 

Dimensional Systems" Wheeler et al.16' and Skocpol et reported 
pronounced structure as a function of gate voltage in the low-temperature 
conductance of narrow Si inversion layers, observed in the course of their 
search for a quantum size effect. 

After the publication in 1985 of the Al'tshuler-Lee-Stone 
t h e ~ r y ' ~ ~ , ' ~ ' , ' ~ ~  of universal conductance fluctuations, a consensus has 
rapidly developed that this theory properly accounts for the conductance 
fluctuations in the metallic regime, up to factor of two uncertainties in the 
quantitative d e ~ c r i p t i o n . ~ ~ . ' ~ ~ . ' ~ ~  Following this theoretical work, Licini et 
~1.4' attributed the magnetoresistance oscillations that they observed in 
narrow Si inversion layers to quantum interference in a disordered con- 
ductor. Their low-temperature measurements, which we reproduce in Fig. 23, 

'"R. G. Wheeler, K. K. Choi, and R. Wisnieff, Surf. Sci. 142, 19 (1984). 
I6'W. J. Skocpol, L. D. Jackel, R. E. Howard, H. G. Craighead, L. A. Fetter, P. M. Mankiewich, 

163A. D. Stone, Phys. Rev. Lett. 54, 2692 (1985). 
'64R. A. Webb, S. Washburn, H. J. Haucke, A. D. Benoit, C. P. Umbach, and F. P. Milliken, in 

P. Grabbe, and D. M. Tennant, Surf Sci. 142, 14 (1984). 

Ref. 14. 
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show a large negative magnetoresistance peak due to weak localization at 
low magnetic fields, in addition to aperiodic fluctuations that persist to high 
fields. Such a clear weak localization peak is not found in shorter samples, 
where the conductance fluctuations are larger. The reason is that the 
magnitude of the conductance fluctuations AG is proportional to (l,/L)3’2 
[for I ,  << I,, cf. Eq. (7.10)], while the weak localization conductance cor- 
rection scales with l,/L [as discussed below Eq. (6.4)]. Weak localization thus 
predominates in long channels ( L  >> 1,) where the fluctuations are relatively 
unimportant. 

The most extensive quantitative study of the universality of the con- 
ductance fluctuations in narrow Si inversion layers (over a wide range of 
channel widths, lengths, gate voltages, and temperatures) was made by 
Skocpol et ~ 1 . ~ ~ 3 ~ ~ 3 ~ ~ ~  In the following, we review some of these experimental 
results. We will not discuss the similarly extensive investigations by Webb et 
a[,  155,164.165 on small metallic samples, which have played an equally 
important role in the development of this subject. To analyze their experi- 
ments, Skocpol et al. estimated 1, from weak localization experiments (with 
an estimated uncertainty of about a factor of 2). They then plotted the root- 
mean-square variation 6G of the conductance as a function of Lll,, with L the 
separation of the voltage probes in the channel. Their results are shown in 
Fig. 24. The points for L > I ,  convincingly exhibit for a large variety of data 
sets the (L/l,)- 3/2 scaling law predicted by the theory described in Section 7.c 
(for I ,  < I,, which is usually the case in Si inversion layers). 

For L < 1, the experimental data of Fig. 24 show a crossover to a (L/l,)-’ 
scaling law (dashed line), accompanied by an increase of the magnitude of the 
conductance fluctuations beyond the value 6G M e2/h predicted by the 
Al’tshuler-Lee-Stone theory for a conductor of length L < I,. A similar 
observation was made by Benoit et ~ 2 l . l ~ ~  on metallic samples. The disagree- 
ment is e ~ p l a i n e d ’ ~ ~ . ’ ~ ~  by considering that the experimental geometry 
differs from that assumed in the theory discussed in Section 7.c. Use is made 
of a long channel with voltage probes at different spacings. The experimental 
L is the spacing of two voltage probes, and not the length of a channel 
connecting two phase-randomizing reservoirs, as envisaged theoretically. The 
difference is irrelevant if L I , .  If the probe separation L is less than the 
phase coherence length 14, however, the measurement still probes a channel 
segment of length I, rather than L. In this sense the measurement is 
nonlocal.’ 5 5 * 1 5 6  The key to the L-’ dependence of 6G found experimentally is 
that the voltages on the probes fluctuate independently, implying that the 

16$R. A. Webb, S. Washburn, C. P. Umbach, and R.  B. Laibowitz, in “Localization, Interaction, 
and Transport Phenomena,” p. 121. (B. Kramer, G. Bergmann, and Y. Bruynseraede, eds.). 
Springer, New York, 1984. 
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FIG. 24. Root-mean-square amplitude 6g of the conductance fluctuations (in units of e2/h) as a 
function of the ratio of the distance between the voltage probes L to the estimated phase 
coherence length & for a set of Si inversion layer channels under widely varying experimental 
conditions. The solid and dashed lines demonstrate the (L/I,J3'* and (L/l,)-2 scaling of 6g in the 
regimes L > 1, and L < I,, respectively. Taken from W. J. Skocpol, Physica Scripta T19,95 (1987). 

resistance fluctuations 6R are independent of L in this regime so that 
6G z R - 2 6 R  cc L-2.  This explanation is consistent with the anomalously 
small correlation field B,  found for L < 1@?6*156  One might have expected 
that the result B, = h/eW1, for L > 1, should be replaced by the larger value 
B,  z h/eWL if L is reduced below 1,. The smaller value found experimentally 
is due to the fact that the flux through parts of the channel adjacent to the 
segment between the voltage probes, as well as the probes themselves, has to 
be taken into account. These qualitative arguments1ss*'s6 are supported by 
detailed theoretical  investigation^.'^^-'^^ The important message of these 
theories and experiments is that the transport in a small conductor is phase 
coherent over large length scales and that phase randomization (due to 
inelastic collisions) occurs mainly as a result of the voltage probes. The 
Landauer-Buttiker f ~ r m a l i s r n ~ . ~  (which we will discuss in Section 12) is 
naturally suited to study such problems theoretically. In that formalism, 
current and voltage contacts are modeled by phase-randomizing reservoirs 
attached to the conductor. We refer to a paper by B i i t t i k i ~ ' ~ ~  for an 
instructive discussion of conductance fluctuations in a multiprobe conductor 
in terms of interfering Feynman paths. 

Conductance fluctuations have also been observed in narrow-channel 
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GaAs-AlGaAs heterostr~ctures.'~~~'~~ These systems are well in the pure 
metal regime ( W <  I ) ,  but unfortunately they are only marginally in the 
regime of coherent diffusion (characterized by z, >> z). This hampers a 
quantitative comparison with the theoretical results'47 for the pure metal 
regime discussed in Section 7.c. (A phenomenological treatment of con- 
ductance fluctuations in the case that z, - z is given in Refs. 168 and 169.) 
The data of Ref. 167 are consistent with an enhancement of the correlation 
field due to the flux cancellation effect, but are not con~ lus ive . '~~  We note 
that the flux cancellation effect can also explain the correlation field 
enhancement noticed in a computer simulation by Stone.'63 

In the analysis of the aforementioned experiments on magnetoconduc- 
tance fluctuations, a twofold spin degeneracy has been assumed. The variance 
(SG), is reduced by a factor of 2 if the spin degeneracy is lifted by a strong 
magnetic field B > Bc2. The Zeeman energy gPBB should be sufficiently large 
than the spin-up and spin-down electrons give statistically independent 
contributions to the conductance. The degeneracy factor 9,' in (SG)2 (intro- 
duced in Section 7.a) should then be replaced by a factor gs, since the 
variances of statistically independent quantities add. Since gs = 2, one 
obtains a factor-of-2 reduction in (SG),. Note that this reduction comes on 
top of the factor-of-2 reduction in (6G)2 due to the breaking of time-reversal 
symmetry, which occurs at weak magnetic fields B,.  Stone has c a l ~ u l a t e d ' ~ ~  
that the field B,, in a narrow channel ( I ,  >> W )  is given by the criterion of unit 
phase change gpBBt,/h in a coherence time, resulting in the estimate 
B,, % h/gpBz,. Surprisingly, the thermal energy kBT is irrelevant for BCz in 
the 1D case 1,  >> W (but not in higher  dimension^'^^). 

For the narrow-channel experiment of Ref. 167 just discussed, one finds 
(using the estimates z, z 7 ps and g z 0.4) a crossover field B,,  of about 2 T, 
well above the field range used for the data analysis.'47 Most importantly, no 
magnetoconductance fluctuations are observed if the magnetic field is applied 
parallel to the 2DEG (see Section 9), demonstrating that the Zeeman splitting 
has no effect on the conductance in this field regime. More recently, Debray et 
al.'" performed an experimental study of the reduction by a perpendicular 
magnetic field of the conductance fluctuations as a function of Fermi energy 

166T. J. Thornton, M. Pepper, H. Ahmed, G. J. Davies, and D. Andrews, Phys. Reo. B 36,4514 
(1 987). 

'"H. van Houten, B. J. van Wees, J. E. Mooij, G. Roos, and K.-F. Berggren, Superluttices and 

I6'R. P. Taylor, M. L. Leadbeater, G. P. Wittington, P. C. Main, L. Eaves, S. P. Beaumont, I. 

169T. Fukui and H. Saito, Jpn. J. Appl. Phys. 27, L1320 (1988). 
I7'A. D. Stone, Phys. Rev. B 39, 10736 (1989). 
171P. Debray, J.-L. Pichard, J. Vicente, and P. N. Tung, Phys. Rev. Lett. 63, 2264 (1989). 

Microstructures 3, 497 (1987). 

McIntyre, S. Thorns, and C. D. W. Wilkinson, Surf. Sci. 196, 52 (1988). 
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(varied by means of a gate). The estimated value of zg is larger than that of 
Ref. 167 by more than an order of magnitude. Consequently, a very small 
B,, z 0.07 T is estimated in this experiment. The channel is relatively wide 
(2 pm lithographic width), so the field B, for time-reversal symmetry breaking 
is even smaller (B,  % 7 x 10-4T). A total factor-of-4 reduction in (6G)' was 
found, as expected. The values of the observed crossover fields B, and B,, 
also agree reasonably well with the theoretical prediction. Unfortunately, the 
magnetoconductance in a parallel magnetic field was not investigated by 
these authors, which would have provided a definitive test for the effect of 
Zeeman splitting on the conductance above Bc2. We note that related 
e ~ p e r i m e n t a l ~ ~ ~ . ' ~ ~  and t h e o r e t i ~ a l ' ~ ~ . ' ~ ~  work has been done on the 
reduction of temporal conductance fluctuations by a magnetic field. 

The Al'tshuler-Lee-Stone theory of conductance fluctuations ceases 
to be applicable when the dimensions of the sample approach the mean 
free path. In this ballistic regime observations of large aperiodic, as well 
as quasi-periodic, magnetoconductance fluctuations have been repor- 

Quantum interference effects in this regime are 
determined not by impurity scattering but by scattering off geometrical 
features of the device, as will be discussed in Section 111. 

8. AHARONOV-BOHM EFFECT 

Magnetoconductance fluctuations in a channel geometry in the diffusive 
regime are aperiodic, since the interfering Feynman paths enclose a cont- 
inuous range of magnetic flux values. A ring geometry, in contrast, encloses a 
well-defined flux @ and thus imposes a fundamental periodicity 

ted.68,69. 139,168,176- 179 

G(@) = G(@ + n(h/e)), n = 1, 2, 3, . . . , (8.1) 

on the conductance as a function of perpendicular magnetic field B (or flux 
(D = BS through a ring of area S ) .  Equation (8.1) expresses the fact that a flux 
increment of an integer number of flux quanta changes by an integer multiple 
of 271 the phase difference between Feynman paths along the two arms of the 
ring. The periodicity (8.1) would be an exact consequence of gauge invariance 
if the magnetic field were nonzero only in the interior of the ring, as in the 

lJ2N. 0. Birge, B. Golding, and W. H. Haemmerle, Phys. Rev. Lett. 62, 195 (1989). 
IJ3D. Mailly, M. Sanquer, J.-L. Pichard, and P. Pari, Europhys. Lett. 8, 471 (1989). 
1'4S. Feng, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 56, 1960 (1986); erratum 56,2772 (1986). 
lJ5B. L. Al'tshuler and B. 2. Spivak, Pis'ma Zh. Eksp. Teor. Fiz.  42, 363 (1985) [ J E T P  Lett. 42, 

'16A. M. Chang, K. Owusu-Sekyere, and T. Y. Chang, Solid State Comm. 67, 1027 (1988). 
17JA. M. Chang, G. Timp, J. E. Cunningham, P. M. Mankiewich, R. E. Behringer, R. E. Howard, 

lJ8J. A. Simmons, D. C. Tsui, and G. Weimann, Surj Sci. 196, 81 (1988). 
lJ9S. Yamada, H. Asai, Y. Fukai, and T. Fukui, Phys. Rev. B. (to be published). 

447 (1985)l. 

and H. U. Baranger, P hys. Rev. B 37, 2745 (1988). 
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FIG. 25. Illustration of the Aharonov-Bohm effect in a ring geometry. Interfering trajectories 
responsible for the magnetoresistance oscillations with h/e periodicity in the enclosed flux @ are 
shown (a). (b) The pair of time-reversed trajectories lead to oscillations with h/2e periodicity. 

original thought experiment of Aharonov and Bohm.'" In the present 
experiments, however, the magnetic field penetrates the arms of the ring as 
well as its interior so that deviations from Eq. (8.1) can occur. Since in many 
situations such deviations are small, at least in a limited field range, one still 
refers to the magnetoconductance oscillations as an Aharonou- Bohm eflect. 

The fundamental periodicity 

h l  
e S  

A B = - -  

is caused by interference between trajectories that make one half-revolution 
around the ring, as in Fig. 25a. The first harmonic 

h 1  
2e S 

A B = - -  

results from interference after one revolution. A fundamental distinction 
between these two periodicities is that the phase of the h/e oscillations (8.2) is 
sample-specific, whereas the h/2e oscillations (8.3) contain a contribution 
from time-reversed trajectories (as in Fig. 25b) that has a minimum con- 
ductance at B = 0, and thus has a sample-independent phase. Consequently, 
in a geometry with many rings in series (or in parallel) the h/e oscillations 
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average out, but the h/2e oscillations remain. The h/2e oscillations can be 
thought of as a periodic modulation of the weak localization effect due to 
coherent backscattering. 

The first observation of the Aharonov-Bohm effect in the solid state was 
made by Sharvin and Sharvin18' in a long metal cylinder. Since this is 
effectively a many-ring geometry, only the h/2e oscillations were observed, in 
agreement with a theoretical prediction by Al'tshuler, Aronov, and 
Spivak,'82 which motivated the experiment. (We refer to Ref. 125 for a simple 
estimate of the order of magnitude of the h/2e oscillations in the dirty metal 
regime.) The effect was studied extensively by several  group^.'^^-'^^ The h/e 
oscillations were first observed in single metal rings by Webb et ~ ~ 1 . l ~ ~  and 
studied theoretically by several a ~ t h o r s . ' ~ ' ~ ~ ~ ' ~ ' ~ ' ~ ~  The self-averaging of the 
hie oscillations has been demonstrated explicitly in experiments with a 
varying number of rings in series.18' Many more experiments have been 
performed on one- and two-dimensional arrays and networks, as reviewed in 
Refs. 190 and 191. 

In this connection, we mention that the development of the theory of 
aperiodic conductance fluctuations (discussed in Section 7) has been much 
stimulated by their observation in metal rings by Webb et uZ. , '~~ in the course 
of their search for the Aharonov-Bohm effect. The reason that aperiodic 
fluctuations are observed in rings (in addition to periodic oscillations) is that 
the magnetic field penetrates the width of the arms of the ring and is not 
confined to its interior. By fabricating rings with a large ratio of radius r to 
width K researchers have proven it is possible to separatelgO the magnetic 
field scales of the periodic and aperiodic oscillations (which are given by a 
field interval of order h/er2 and h/eWl+, respectively). The penetration of the 
magnetic field in the arms of the ring also leads to a broadening of the peak in 

IS0Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). 
'"D. Yu. Sharvin and Yu. V. Sharvin, Pis'ma Zh. Ror. Fiz. 34, 285 (1981) [JETP Lett. 34,272 
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Rev. B 30, 2964 (1984). 
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the Fourier transform at the e/h and 2elh periodicities, associated with a 
distribution of enclosed The width of the Fourier peak can be used as 
a rough estimate for the width of the arms of the ring. In addition, the 
nonzero field in the arms of the ring also leads to a damping of the amplitude 
of the ensemble-averaged h/2e oscillations when the flux through the arms is 
sufficiently large to suppress weak localization.'9' 

Two excellent reviews of the Aharonov-Bohm effect in metal rings and 
cylinders exist.' 9 0 3 1 9 1  In the following we discuss the experiments in semicon- 
ductor nanostructures in the weak-field regime o,z < 1, where the effect of 
the Lorentz force on the trajectories can be neglected. The strong-field regime 
o,z > 1 (which is not easily accessible in the usual polycrystalline metal 
rings) is only briefly mentioned; it is discussed more extensively in Section 21. 
To our knowledge, no observation of Aharonov-Bohm magnetoresistance 
oscillations in Si inversion layers has been reported. The first observation of 
the Aharonov-Bohm effect in a 2DEG ring was published by Timp et a1.,69 
who employed high-mobility GaAs-AlGaAs heterostructure material. 
Similar results were obtained independently by Ford et ~ 1 . ~ ~  and Ishibashi et 
~ 1 . ' ~ ~  More detailed studies soon f o l l o ~ e d . ~ ~ ~ ' ~ ~ ~ ' ~ ~ ~ ' ~ ~ ~ ~ ~ ~  A characteristic 
feature of these experiments is the large amplitude of the h/e oscillations (up 
to 10% of the average resistance), much higher than in metal rings (where the 
effect is at b e ~ t ' ~ ~ , ' ~ ~ , ' ~ '  of order 0.1%). A similar difference in magnitude is 
found for the aperiodic magnetoresistance fluctuations in metals and semi- 
conductor nanostructures. The reason is simply that the amplitude 6G of the 
periodic or aperiodic conductance oscillations has a maximum value of order 
e2/h, so the maximum relative resistance oscillation 6R/R  x R6G x Re2/h is 
proportional to the average resistance R,  which is typically much smaller in 
metal rings. 

In most studies only the hle fundamental periodicity is observed, although 
Ford et ~ 1 . ~ ~ 7 ~ '  found a weak h/2e harmonic in the Fourier transform of the 
magnetoresistance data of a very narrow ring. It is not quite clear whether 
this harmonic is due to the Al'tshuler-Aronov-Spivak mechanism involving 
the constructive interference of two time-reversed trajectories'82 or to the 
random interference of two non-time-reversed Feynman paths winding 
around the entire ring.1.'44,'87 Th e relative weakness of the h/2e effect in 
single 2DEG rings is also typical for most experiments on single metal rings 

I9'R. A. Webb, A. Hartstein, J. J. Wainer, and A. B. Fowler, Phys. Rev. Lett. 54, 1577 (1985). 
K. Ishibashi, Y. Takagaki, K. Gamo, S. Namba, S. Ishida, K. Murase, Y. Aoyagi, and M. 
Kawabe, Solid State Comm. 64, 573 (1987). 

Ig4A. M. Chang, G. Timp, T. Y. Chang, J. E. Cunningham, B. Chelluri, P. M. Mankiewich, R. E. 
Behringer, and R. E. Howard, Surf: Sci. 1%,46 (1988). 

19'C. J. B. Ford, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, D. C. Peacock, D. A. 
Ritchie, J. E. F. Frost, and G. A. C. Jones, Appl. Phys. Lett. 54, 21 (1989). 
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(although the opposite was found to be true in the case of aluminum rings by 
Chandrasekhar et aZ.,19’ for reasons which are not understood). This is in 
contrast to the case of arrays or cylinders, where, as we mentioned, the h/2e 
oscillations are predominant-the h/e effect being “ensemble-averaged’’ to 
zero because of its sample-specific phase. In view of the fact that the 
experiments on 2DEG rings explore the borderline between diffusive and 
ballistic transport, they are rather difficult to analyze quantitatively. A 
theoretical study of the Aharonov-Bohm effect in the purely ballistic 
transport regime was performed by Datta and Bandy~padhyay , ’~~  in 
relation to an experimental observation of the effect in a double-quantum- 
well device.’99 A related study was published by Barker.”’ 

The Aharonov-Bohm oscillations in the magnetoresistance of a small ring 
in a high-mobility 2DEG are quite impressive. As an illustration, we 
reproduce in Fig. 26 the results obtained by Timp et aZ.”’ Low-frequency 
modulations were filtered out, so that the rapid oscillations are superimposed 
on a constant background. The amplitude of the h/e oscillations diminishes 
with increasing magnetic field until eventually the Aharonov-Bohm effect is 
completely suppressed. The reduction in amplitude is accompanied by a 
reduction in frequency. A similar observation was made by Ford et ~ 2 1 . ~ ~  In 
metals, in contrast, the Aharonov-Bohm oscillations persist to the highest 
experimental fields, with constant frequency. The different behavior in a 
2DEG is a consequence of the effect of the Lorentz force on the electrons in 
the ring, which is of importance when the cyclotron diameter 21cyc, becomes 
smaller than the width W of the arm of the ring, provided ( W <  I )  (note that 
lcycl = hk,/eB is much smaller in a 2DEG than in a metal, at the same 
magnetic field value). We will return to these effects in Section 21. 

An electrostatic potential V affects the phase of the electron wave function 
through the term (e/h)J V d t  in much the same way as a vector potential 
does.18’ If the two arms of the ring have a potential difference K and an 
electron traverses an arm in a time t ,  then the acquired phase shift would lead 
to oscillations in the resistance with periodicity AV = h/et. The electrostatic 
Aharonov- Bohm effect has a periodicity that depends on the transit time t ,  
and is not a geometrical property of the ring, as it is for the magnetic effect. A 
distribution of transit times could easily average out the oscillations. Note 
that the potential difference effectuates the phase difference by changing the 
wavelength of the electrons (via a change in their kinetic energy), which also 
distinguishes the electrostatic from the magnetic effect (where a phase shift is 

IS’S. Datta and S. Bandyopadhyay, Phys. Rev. Lett. 58, 717 (1987). 
199S. Datta, M. R. Melloch, S. Bandyopadhyah, R. Noren, M. Vaziri, M. Miller, and R. 

looJ. R. Barker, in Ref. 15. 
”‘G. Timp. A. M. Chang, P. DeVegvar, R. E. Howard, R. Behringer, J. E. Cunningham, and P. 

Reifenberger, Phys. Rev. Lett. 55, 2344 (1985). 

Mankiewich, Surf: Sci. 196, 68 (1988). 
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FIG. 26. Experimental magnetoresistance of a ring of 2pm diameter, defined in the 2DEG of a 
high-mobility GaAs-AIGaAs heterostructure (T = 270mK). The different traces are consecutive 
parts of a magnetoresistance measurement from 0 to 1.4T, digitally filtered to suppress a slowly 
varying background. The oscillations are seen to persist for fields where U ~ T  > 1, but their 
amplitude is reduced substantially for magnetic fields where 21,,,, << W (The field value where 
21,,,, = 2r, = W is indicated). Taken from G. Timp et al., Surf: Sci. 196, 68 (1988). 
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induced by the vector potential without a change in wavelength). An 
experimental search for the electrostatic Aharonov-Bohm effect in a small 
metal ring was performed by Washburn et dZo2 An electric field was applied 
in the plane of the ring by small capacitive electrodes. They were able to shift 
the phase of the magnetoresistance oscillations by varying the field, but the 
effect was not sufficiently strong to allow the observation of purely electrosta- 
tic oscillations. Unfortunately, this experiment could not discriminate be- 
tween the effect of the electric field penetrating in the arms of the ring (which 
could induce a phase shift by changing the trajectories) and that of the elec- 
trostatic potential. Experiments have been reported by De Vegvar et dZo3 
on the manipulation of the phase of the electrons by means of the voltage on a 
gate electrode positioned across one of the arms of a heterostructure ring. In 
this system a change in gate voltage has a large effect on the resistance of the 
ring, primarily because it strongly affects the local density of the electron gas. 
No clear periodic signal, indicative of an electrostatic Aharonov-Bohm 
effect, could be resolved. As discussed in Ref. 203, this is not too surprising, in 
view of the fact that in that device 1D subband depopulation in the region 
under the gate occurs on the same gate voltage scale as the expected 
Aharonov-Bohm effect. The observation of an electrostatic Aharonov- 
Bohm effect thus remains an experimental challenge. A successful experiment 
would appear to require a ring in which only a single 1D subband is occupied, 
to ensure a unique transit time.'98,200 

9. ELECTRON-ELECTRON INTERACTIONS 

a. Theory 

In addition to the weak localization correction to the conductivity 
discussed in Section 6, which arises from a single-electron quantum inter- 
ference effect, the Coulomb interaction of the conduction electrons gives also 
rise to a quantum c o r r e c t i ~ n . ~ ~ ~ ~ ~ ~ ~  In two dimensions the latter correction 
has a logarithmic temperature dependence, just as for weak localization [see 
Eq. (6.4)]. A perpendicular magnetic field can be used to distinguish the two 
quantum corrections, which have a different field d e p e n d e n ~ e . " ~ ~ ~ ~ ~ - ~ ~ ~  

202S. Washburn, H. Schmid, D. Kern, and R. A. Webb, Phys. Rev. Lett. 59, 1791 (1987). 
'03P. G. N.  de Vegvar, G. Timp, P. M. Mankiewich, R. Behringer, and J. Cunningham, Phys. 

'04B. L. Al'tshuler, A. G. Aronov, and P. A. Lee, Phys. Rev. Lett. 44, 1288 (1980). 
"'H. Fukuyama, J .  Phys. Soc. Japan, 48, 2169 (1980). 
'06B. L. Al'tshuler, A. G. Aronov, A. I. Larkin, and D. E. Khmel'nitskii, Zh.  Eksp. Teor. Fiz.  81, 

"'B. L. Al'tshuler, and A. G. Aronov, Solid State Comm. 46, 429 (1983). 
''*E. Abrahams, P. W. Anderson, P. A. Lee, and T. V. Ramakrishnan, Phys. Rev. B 24, 6783 

'09H. Fukuyama, J .  Phys. Soc. Japan, 50, 3407, 3562 (1981); 51, 1105 (1982). 
2'oP. A. Lee and T. V. Ramakrishnan, Phys. Rev. B 26, 4009 (1982). 

Rev. B 40, 3491 (1989). 

768 (1981) [Sou. Phys. JETP 54,411 (1981)l. 

(1981). 
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This field of research has been reviewed in detail by Al’tshuler and 
Aronov,”l by Fukuyama,’” and by Lee and Ramakrishnan,’” with an 
emphasis on the theory. A broader review of electronic correlation effects in 
2D systems has been given by Isihara in this series.’13 In the present 
subsection we summarize the relevant theory, as a preparation for the 
following subsection on experimental studies in semiconductor nanostruc- 
tures. We do not discuss the diagrammatic perturbation theory, since it is 
highly technical and does not lend itself to a discussion at the same level as for 
the other subjects dealt with in this review. 

An attempt at an intuitive interpretation of the Feynman diagrams was 
made by Bergmant~.”~ It is argued that one important class of diagrams may 
be interpreted as diffraction of one electron by the oscillations in the 
electrostatic potential generated by the other electrons. The Coulomb 
interaction between the electrons thus introduces a purely quantum mechan- 
ical correlation between their motion, which is observable in the conductiv- 
ity. The diffraction of one electron wave by the interference pattern generated 
by another electron wave will only be of importance if their wavelength 
difference, and thus their energy difference, is small. At a finite temperature 7: 
the characteristic energy difference is kBT. The time zT = h/kBT enters as a 
long-time cutoff in the theory of electron-electron interactions in a disor- 
dered conductor, in the usual c a ~ e ~ ’ ~ , ’ ~ ~  zT 5 zg. (Fukuyama’l’ also 
discusses the opposite limit zT >> rg .) Accordingly, the magnitude of the 
thermal length lT = (DzT)l/’ compared with the width W determines the 
dimensional crossover from 2D to 1D [for IT < l4 5 (DzS)’/’]. In the 
expression for the conductivity correction associated with electron-electron 
interactions, the long-time cutoff zT enters logarithmically in 2D and as a 
square root in 1D. These expressions thus have the same form as for weak 
localization, but with the phase coherence time zg replaced by zT. The origin 
of this difference is that a finite temperature does not introduce a long-time 
cutoff for the single-electron quantum interference effect responsible for weak 
localization, but merely induces an energy average of the corresponding 
conductivity correction. 

In terms of effective interaction parameters gZD and g I D ,  the conductivity 

’‘‘B. L. Al’tshuler and A. G. Aronov, in “Electron-Electron Interactions in Disordered Systems,” 

”’H. Fukuyama, in “Electron-Electron Interactions in Disordered Systems,” p. 155 (A. L. Efros 

’I3A. Isihara, “Solid State Physics,” Vol. 42, p. 271 (H. Ehrenreich and D. Turnbull, eds.). 

’14G. Bergmann, Phys. Rev. B 35, 4205 (1987). 

p. 1 (A. L. Efros and M. Pollak, eds.) North-Holland, Amsterdam, 1985. 

and M. Pollak, eds.). North-Holland, Amsterdam, 1985. 

Academic Press, New York, 1989. 
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corrections due to electron-electron interactions can be written as (assuming 
5 << TT << 7,) 

60 = - ee 

e2 1, Saee = - glD w, for W << 1, << L. 

(9.la) 

(9.1 b) 

Under typical experimental  condition^,^^ the constants g2D and g1D are 
positive and of order unity. Theoretically, these effective interaction para- 
meters depend in a complicated way on the ratio of screening length to Fermi 
wavelength and can have either sign. We do  not give the formulas here, but 
refer to the reviews by Al'tshuler and Aronov2" and Fukuyama.212 In 2D 
the interaction correction bc,, shares a logarithmic temperature dependence 
with the weak localization correction doloc, and both corrections are of the 
same order of magnitude. In 1D the temperature dependences of the two 
effects are different (unless zg cc T-'l2). Moreover, in the 1D case Sa,, << Scloc 
if 1, << 1,. 

A weak magnetic field fully suppresses weak localization, but has only a 
small effect on the quantum correction from electron-electron interactions. 
The conductance correction SG,, contains contributions of diffuson type and 
of cooperon type. The diffusons (which give the largest contributions to dG,,) 
are affected by a magnetic field only via the Zeeman energy, which removes 
the spin degeneracy when gpBB 2 k,T In the systems of interest here, spin 
splitting can usually be ignored below lT, so the diffusons are insensitive to a 
weak magnetic field. Since the spin degeneracy is removed regardless of the 
orientation of the magnetic field, the B-dependence of the diffuson is 
isotropic. The smaller cooperon contributions exhibit a similar sensitivity as 
weak localization to a weak perpendicular magnetic field, the characteristic 
field being determined by 1; x 1; in 2D and by 1; x w 1 T  in 1D (in the dirty 
metal regime W >> I ,  so flux cancellation does not play a significant role). The 
magnetic length 1, = (h/eB,)"2 contains only the component B ,  of the field 
perpendicular to the 2DEG, since the magnetic field affects the cooperon via 
the phase shift induced by the enclosed flux. The anisotropy and the small 
characteristic field are two ways to distinguish experimentally the cooperon 
contribution from that of the diffuson. It is much more difficult to distinguish 
the cooperon contribution to 6G,, from the weak localization correction, 
since both effects have the same anisotropy, while their characteristic fields 
are comparable (IT and Z4 not being widely separated in the systems 
considered here). This complication is made somewhat less problematic by 
the fact that the cooperon contribution to 6G,, is often considerably smaller 
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than dGloc, in which case it can be ignored. In 1D the reduction is 
of order [l + A l n ( ~ ~ / ~ ~ ~ ) ] - l ( 1 ~ / Z ~ ) ,  with A a numerical coefficient of order 
unity. 

There is one additional aspect to the magnetoresistance due to electron- 
electron interactions that is of little experimental relevance in metals but 
becomes important in semiconductors in the classically strong-field regime 
where w,z > 1 (this regime is not easily accessible in metal nanostructures 
because of the typically short scattering time). In such strong fields only the 
diffuson contributions to the conductivity corrections survive. According to 
Houghton et ~ 1 . " ~  and Girvin et U Z . , ~ ' ~  the diffuson does not modify the off- 
diagonal elements of the conductivity tensor, but only the diagonal elements 

so,, = doyx = 0, do,, = day, = do,,, (9.2) 

where do,, is approximately field-independent (provided spin splitting does 
not play a role). In a channel geometry one measures the longitudinal 
resistivity pxx,  which is related to the conductivity tensor elements by 

Here p:x = p and o:, = o[1 + (o , z )~ ] -~  are the classical results (4.25) and 
(4.26). In obtaining this result the effects of Landau level quantization on the 
conductivity have been disregarded (see, however, Ref. 55). The longitudinal 
resistivity thus becomes magnetic-field-dependent: 

~ x x  = P (1 + C(wc2)' - 1I6~ee /~ ) .  (9.4) 

To the extent that the &dependence of doee can be neglected, Eq. (9.4) gives a 
parabolic negative magnetoresistance, with a temperature dependence that is 
that of the negative conductivity correction bee. This effect can easily be 
studied up to o,z = 10, which would imply an enhancement by a factor of 
100 of the resistivity correction in zero magnetic field. (The Hall resistivity pxy 
also contains corrections from do,,, but without the enhancement factor.) In 
2D it is this enhancement that allows the small effect of electron-electron 
interactions to be observable experimentally (in as far as the effect is due to 
diffuson-type contributions). 

Experimentally, the parabolic negative magnetoresistance associated with 
electron-electron interactions was first identified by Paalanen et in 
high-mobility GaAs-AlGaAs heterostructure channels. A more detailed 
study was made by Choi et ~ 1 . ~ ~  In that paper, as well as in Ref.113, it was 
found that the parabolic magnetoresistance was less pronounced in narrow 

'"A. Houghton, J. R .  Senna, and S. C. Ying, Phys. Rev. B 25, 2196 (1982). 
216S. M. Girvin, M. Jonson, and P. A. Lee, Phys. Rev. B 26, 1651 (1982). 
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channels than in wider ones. Choi et al. attributed this suppression to 
specular boundary scattering. It should be noted, however, that specular 
boundary scattering has no effect at all on the classical conductivity tensor oo 
(in the scattering time approximation; cf. Section 5.b). Since the parabolic 
magnetoresistance results from the (o,~)’ term in l / r~ :~  [see Eq. (9.4)], one 
would expect that specular boundary scattering does not suppress the 
parabolic magnetoresistance (assuming that the result = 6gYx = 0 still 
holds in the pure metal regime 1 > W). Diffuse boundary scattering does 
affect oo, but only for relatively weak fields such that 2lcyCl 2 W (see Section 
5); hence, diffuse boundary scattering seems equally inadequate in explaining 
the observations. In the absence of a theory for electron-electron interaction 
effects in the pure metal regime, this issue remains unsettled. 

b. Narrow-Channel Experiments 

Wheeler et were the first to use magnetoresistance experiments as a 
tool to distinguish weak localization from electron-electron interaction 
effects in narrow Si MOSFETs. As in most subsequent studies, the negative 
magnetoresistance was entirely attributed to the suppression of weak 
localization; the cooperon-type contributions from electron-electron inter- 
actions were ignored. After subtraction of the weak localization correction, 
the remaining temperature dependence was found to differ from the simple 
T-’I’ dependence predicted by the theory for W < I ,  < I ,  [Eq. (9.lb)l. This 
was attributed in Ref. 38 to temperature-dependent screening at the relatively 
high temperatures of the experiment. Pooke et found a nice T-“’ 
dependence in similar experiments at  lower temperatures in narrow Si 
accumulation layers and in GaAs- AlGaAs heterostructures. 

The most detailed study by far of the 2D to 1D crossover of the electron- 
electron interaction effect in narrow channels was made by Choi et ~ 1 . ’ ~  in a 
GaAs-AIGaAs heterostructure. In Fig. 27 we reproduce some of their 
experimental traces for channel widths from 156 to 1.1 pm and a channel 
length of about 300 pm. The weak localization peak in the magnetoresistance 
is not resolved in this experiment, presumably because the channels are not in 
the 1D regime for this effect (the 2D weak localization peak would be small 
and would have a width of T). The negative magnetoresistance that they 
found below 0.1-0.2 T in the narrowest channels is temperature-independent 
between 1 and 4 K and was therefore identified by Choi et al.” as a classical 
size effect. The classical negative magnetoresistance extends over a field range 
for which 2lcyCl k W This effect has been discussed in Section 5 in terms of 
reduction of backscattering by a magnetic field. The electron-electron 
interaction effect is observed as a (temperature-dependent) parabolic negative 
magnetoresistance above 0.1 T for the widest channel and above 0.3 T for the 
narrowest one. From the magnitude of the parabolic negative magnetoresis- 
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FIG. 27. Negative magnetoresistance in wide and narrow GaAs-A1GaAs channels at 4.2 and 
1.6 K. The temperature-independent negative magnetoresistance at  low fields is a classical size 
effect. The temperature-dependent parabolic magnetoresistance at higher fields is a quantum 
interference effect associated with electron-electron interactions. Shubnikov-De Haas oscilla- 
tions are visible for fields greater than about 0.3 T. Taken from K. K. Choi et al., Phys. Rev. B 33, 
8216 (1986). 

tance, Choi et could find and analyze the crossover from 2D to 1D 
interaction effects. In addition, they investigated the cross over to OD by 
performing experiments on short channels. As seen in Fig. 27, Shubnikov-De 
Haas oscillations are superimposed on the parabolic negative magnetoresis- 
tance at low temperatures and strong magnetic fields. It is noteworthy that 
stronger fields are required in narrower channels to observe the Shubnikov- 
De Haas oscillations, an effect discussed in terms of specular boundary 
scattering by Choi et al. The Shubnikov-De Haas oscillations in narrow 
channels are discussed further in Section 10.b. 

was extended to even 
narrower channels, well into the 1D pure metal regime. The results for a 
conducting channel width of 0.12pm are shown in Fig. 28. The 1D weak 
localization Deak in the mametoresistance is Quite large for this narrow 

In Refs. 63, 167, and 27 the work by Choi et 
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B (T)  
FIG. 28. Magnetoresistance at various temperatures of a GaAs-AIGaAs channel 

( W =  0.12pm, L =  lop) defined by a shallow-mesa etch technique. The central negative 
magnetoresistance peak between -0.1 and +O.lT at low temperatures is due to 1D weak 
localization in the quasi-ballistic regime. Conductance fluctuations are seen at larger fields. The 
negative magnetoresistance that persists to high temperatures is a classical size effect as in Fig. 
27. The temperature dependence of the resistance at B = 0 is due to a combination of weak 
localization and electron-electron interaction effects (see Fig. 30). Taken from H. van Houten et 
al., Appl. Phys. Lett. 49, 1781 (1986). 

channel (even at the rather high temperatures shown) and clearly visible 
below 0.1 T. The classical size effect due to reduction of backscattering now 
leads to a negative magnetoresistance on a larger field scale of about 1 T, in 
agreement with the criterion 21,,,, - u! This is best seen at temperatures 
above 20 K, where the quantum mechanical effects are absent. The 
temperature-dependent parabolic negative magnetoresistance is no longer 
clearly distinguishable in the narrow channel of Fig. 28, in contrast to wider 
 channel^.^^,^^ The suppression of this effect in narrow channels is not yet 
understood (see Section 9.a). Superimposed on the smooth classical mag- 
netoresistance, one sees large aperiodic fluctuations on a field scale of the 
same magnitude as the width of the weak localization peak, in qualitative 
agreement with the theory of universal conductance fluctuations in the pure 
metal regime14’ (see Section 7.d). Finally, Shubnikov-De Haas oscillations 
are beginning to be resolved around 1.2T, but they are periodic in 1/B at 
stronger magnetic fields only (not shown). As discussed in Section 10, this 
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FIG. 29. Angular dependence of the magnetoresistance of Fig. 28, at 4K,  proving that it has a 
purely orbital origin. Taken from H. van Houten et al., Superlattices and Microstructures 3,497 
(1987). 

anomaly in the Shubnikov-De Haas effect is a manifestation of a quantum 
size e f f e ~ t . ' ~ ~ . ' ~  7 , 2 1 8  This one figure thus summarizes the wealth of classical 
and quantum magnetoresistance phenomena in the quasi-ballistic transport 
regime. 

Essentially similar results were obtained by Taylor et ~ 1 . " ~  In the field 
range of these experiments,27.55*63.'67.219 the magnetoresistance is exclusive- 
ly caused by the enclosed flux and the Lorentz force (so called orbital effects). 
The Zeeman energy does not play a role. This is demonstrated in Fig. 29, 

217K.-F. Berggren, T. J. Thornton, D. J. Newson, and M. Pepper, Phys. Rev. Lett. 57,1769 (1986). 
"*K.-F. Berggren, G. Roos, and H. van Houten, Phys. Rev. B 37, 10118 (1988). 
'"R. P. Taylor, P. C. Main, L. Eaves, S. P. Beaumont, I. McIntyre, S. Thoms, and C. D. W. 

Wilkinson, J .  Phys. Condens. Matter 1, 10413 (1989). 
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FIG. 30. Zero-field conductance (circles) and conductance corrected for the weak localization 
effect (squares) for the channel of Fig. 28 as a function of T-'", to demonstrate the T-'" 
dependence on the temperature of the electron-electron interaction effect expected from Eq. 
(9.lb). The solid and dashed lines are guides to the eye. The extrapolated value at high 
temperatures is the classical part of the conductance. Taken from H. van Houten et al., Acta 
Electronica 28, 27 (1988). 

where the magnetoresistance (obtained on the same sample as that used in 
Fig. 28) is shown to vanish when B is in the plane of the 2DEG (similar results 
were obtained in Ref. 168). In wide 2DEG channels a negative mag- 
netoresistance has been found by Lin et al. in a parallel magnetic field.z3 This 
effect has been studied in detail by Mensz and Wheeler,z20 who attributed it 
to a residual orbital effect associated with deviations of the 2DEG from a 
perfectly flat plane. Fal'ko2z1 has calculated the effect of a magnetic field 
parallel to the 2DEG on weak localization, and has found a negative 
magnetoresistance, but only if the scattering potential does not have 
reflection symmetry in the plane of the 2DEG. 

In Fig. 30 the temperature dependence of the zero-field conductancez7 is 
plotted as a function of Tp1Iz, together with the conductance after sub- 

zzOP. M. Mensz, R. G. Wheeler, C. T. Foxon, and J. J. Harris, Appl. Phys. Lett. 50,603 (1987); P. 

*"V. Fal'ko, J. Phys. Condens. Matter 2, 3797 (1990). 
M. Mensz and R. G. Wheeler, Phys. Rev. B 35, 2844 (1987). 
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traction of the weak localization correction. The straight line through the 
latter data points demonstrates that the remaining temperature dependence 
may, indeed, be attributed to the electron-electron interactions. A similar 
Tp1'2 dependence was found by Thornton et ~ 1 . ~ ~  in a narrow GaAs- 
AlGaAs channel defined using the split-gate method. The slope of the straight 
line in Fig. 30 gives g1D z 1.5 in Eq. (9.lb), which is close to the value found 
by Choi et It should be noted, however, that this experiment is already in 
the regime where the quantum corrections are by no means small, so the 
perturbation theory is of questionable validity. For this reason, and also in 
view of other problems (such as the difficulty in determining the effective 
channel width, the presence of channel width variations, and a frequently 
observed saturation of the weak localization correction at low temperatures 
due to loss of phase coherence associated with external noise or radio- 
frequency interference), a quantitative analysis of the parameters obtained 
from the weak localization and electron-electron corrections in narrow 
channels (zs and g1D) is not fully warranted. Indeed, most of the narrow- 
channel studies available today have not been optimized for the purpose of a 
detailed quantitative analysis. Instead, they were primarily intended for a 
phenomenological exploration, and as such we feel that they have been quite 
successful. 

10. QUANTUM SIZE EFFECTS 

Quantum size effects on the resistivity result from modifications of the 2D 
density of states in a 2DEG channel of width comparable to the Fermi 
wavelength. The electrostatic lateral confinement in such a narrow channel 
leads to the formation of 1D subbands in the conduction band of the 2DEG 
(see Section 4.a). The number N z kFW/x of occupied 1D subbands is 
reduced by decreasing the Fermi energy or the channel width. This de- 
population of individual subbands can be detected via the resistivity. An 
alternative method to depopulate the subbands is by means of a magnetic 
field perpendicular to the 2DEG. The magnetic field B has a negligible effect 
on the density of states at the Fermi level if the cyclotron diameter 21,,,, >> W 
(i.e., for B << Bcrit = 2hkF/eW). If B >> Bcrit, the electrostatic confinement can 
be neglected for the density of states, which is then described by Landau levels 
[Eq. (4.6)]. The number of occupied Landau levels N M EF/ho,  z kFlcyC,/2 
decreases linearly with B for B >> Bcrit. In the intermediate field range where B 
and Bcri, are comparable, the electrostatic confinement and the magnetic field 
together determine the density of states. The corresponding magnetoelectric 
subbands are depopulated more slowly by a magnetic field than are the 
Landau levels, which results in an increased spacing of the Shubnikov-De 
Haas oscillations in the magnetoresistivity (cf. Section 4.d). 

In the following subsection we give a more quantitative description of 
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magnetoelectric subbands. Experiments on the electric and magnetic de- 
population of subbands in a narrow channel are reviewed in Section 9.b. We 
only consider here the case of a long channel ( L  >> I )  in the quasi-ballistic 
regime. Quantum size effects in the fully ballistic regime ( L  5 I )  are the 
subject of Section 111. 

a. Magnetoelectric Subbands 

Consider first the case of an unbounded 2DEG in a perpendicular 
magnetic field B = V x A.  The Hamiltonian for motion in the plane of the 
2DEG is given by 

(10.1) 

for a single spin component. In the Landau gauge A = (0, Bx, 0), with B in the 
z-direction, this may be written as 

(10.2) 

with w, = eB/m and xo = -py /eB.  The y-momentum operator p ,  = -iha/dy 
can be replaced by its eigenvalue hk,, since p y  and .% commute. The effect of 
the magnetic field is then represented by a harmonic oscillator potential in 
the x-direction, with center xo = -hk,/eB depending on the momentum in 
the y-direction. The energy eigenvalues En = (n - +)hw,, n = 1, 2, 3, . . . , do 
not depend on k, and are therefore highly degenerate. States with the same 
quantum number n are referred to collectively as Landau levels.93 The 
number of Landau levels below energy E is given by 

N = Int[1/2 + E/ho,], (10.3) 

where Int denotes truncation to an integer. 
A narrow channel in the y-direction is defined by an electrostatic confining 

potential V(x). The case of a parabolic confinement is easily solved ana- 
l y t i ~ a l l y . ~ ~ , ~ ~ ~ . ~ ~ ~ . ~ ~ ~  Adding a term V(x) = *mosx2 to the hamiltonian 
(10.2), one finds, after a rearrangement of terms, 

p: mw2 h2k2 
2m 2 2M ' 

.%=-+- (x - X,)2 + ~ (1 0.4) 

with w = (0," + o;)"~, Xo = xow,/w, and M = mw2/o;. The first two terms 
describe the motion in the x-direction in a harmonic potential with effective 
frequency w 2 wo, and the third term describes free motion in the y-direction 

L. Smrcka, H. Havlova, and A. Ishara, J .  Phys. C 19, L457 (1986). 222  

223K.-F. Berggren, and D. J. Newson, Semicond. Sci. Technol. 1, 327 (1986). 
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with an effective mass M 2 m. This last term removes the degeneracy of the 
Landau levels, which become 1D subbands with energy 

E,(k) = (n  - @KO + h2k2/2M. (10.5) 

The subband bottoms have energy En = (n  - *)ho, and the number of 
subbands occupied at energy E is N = Int[* + E / h o ] .  The quasi-1D density 
of states is obtained from Eq. (4.4) on substituting m for M .  For the 
comparison with experiments it is useful to define an effective width for the 
parabolic potential. One can take the width W,,, to be the separation between 
the equipotentials at the Fermi energy 

w,,, = 2hk,/mU,. (1 0.6) 

(An alternative, which differs only in the numerical prefactor, is to take 
W,,, 3 n,,/n,, with n, = g , g V k ~ / 4 n  the 2D sheet density and n,, the number 
of electrons per unit length in the narrow The number of 
occupied magnetoelectric subbands at energy E ,  in a parabolic confining 
potential may then be written as 

N = Int[+ i- $kF w,,, [1 + ( Wpar/2&.l)Z] - '''1, (10.7) 

where lcycl z hk,/eB is the cyclotron radius at the Fermi energy. For easy 
reference, we also give the result for the number of occupied subbands at the 
Fermi energy in a square-well confinement potential of width W: 

W 
N z Int - - arcsin __ [a 2, ( 

W 
2 

, if lcycl -= -. 
(10.8a) 

(10.8b) 

(This result is derived in Section 12.a in a semiclassical approximation. The 
accuracy is _+ 1.) One easily verifies that, for B << Bcrit = 2hk,/eW Eq. (10.8) 
yields N % k, W / n .  The parabolic confining potential gives N x k,W,,,/4 in 
the weak-field limit. In the strong-field limit B >> Bcrit, both potentials give 
the result N x E, /hw,  = kFlcycl/2 expected for pure Landau levels. In Fig. 31 
we compare the depopulation of Landau levels in an unbounded 2DEG with 
its characteristic 1/B dependence of N (dashed curve), with the slower 
depopulation of magnetoelectric subbands in a narrow channel. The dash- 
dotted curve is for a parabolic confining potential, the solid curve for a 
square-well potential. These results are calculated from Eqs. (10.7) and (10.8), 
with kFWpar/n = kFW/z = 10. A B-independent Fermi energy was assumed in 
Fig. 31 so that the density n,, oscillates around its zero-field value. (For a 
long channel, it is more appropriate to assume that n,, is B-independent, to 



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 83 

70 

15 - iI />[ LV = 10 

Y 1 0 7 -  

- ~ 

1 

- 7- 5 -  

0 I 

FIG 31 Magnetic field dependence of the 
number N of occupied subbands in a narrow 
channel for a parabolic confining potential 
according to Eq (10 7) (dot-dashed curve), 
and for a square-well confinmg potential ac- 
cording to Eq (10 8) (full curve) The dashed 
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curve gives the magnetic depopulation of 
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preserve charge neutrality, in which case EF oscillates. This case is studied in 
Ref. 218.) Qualitatively, the two confining potentials give similar results. The 
numerical differences reflect the uncertainty in assigning an effective width to 
the parabolic potential. Self-consistent solutions of the Poisson and Schrod- 
inger  equation^^^.^^.^ 1,72*224 for channels defined by a split gate have shown 
that a parabolic potential with a flat bottom section is a more realistic model. 
The subband depopulation for this potential has been studied in a semiclass- 
ical approximation in Ref. 223. A disadvantage of this more realistic model is 
that an additional parameter is needed for its specification (the width of the 
flat section). For this practical reason, the use of either a parabolic or a 
square-well potential has been preferred in the analysis of most experiments. 

b. Experiments on Electric and Magnetic Depopulation of Subbands 

The observation of 1 D subband effects unobscured by thermal smearing 
requires low temperatures, such that 4k,T << AE, with AE the energy 
difference between subband bottoms near the Fermi level (4k,T being the 
width of the energy averaging function d f / d E F ;  see Section 4.b; For a square 
well AE z 2E,/N, and for parabolic confinement AE z E F / N ) .  Moreover, 
the formation of subbands requires the effective mean free path (limited by 
impurity scattering and diffuse boundary scattering) to be much larger than 
W (cf. also Ref. 218). The requirement on the temperature is not difficult to 
meet, AE/4k,T being on the order of 50K for a typical GaAs-AlGaAs 
channel of width W =  100nm, and the regime 1 > W is also well accessible. 
These simple considerations seem to suggest that 1D subband effects should 
be rather easily observed in semiconductor nanostructures. This conclusion is 
misleading, however, and in reality manifestations of 1 D subband structure 
have been elusive, at least in the quasi-ballistic regime W < 1 < L. The main 
reason for this is the appearance of large conductance fluctuations that mask 
the subband structure if the channel is not short compared with the mean free 
path. 

zz4J. A. Brum and G. Bastard, Superlattices and Microstructures 4, 443 (1988). 
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 calculation^^^^-^^^ of the average conductivity of an ensemble of narrow 
channels do in fact show oscillations from the electric depopulation of 
subbands [resulting from the modulation of the density of states at the Fermi 
level, which determines the scattering time; see Eq. (4.28)]. The oscillations 
are not as large as the Shubnikov-De Haas oscillations from the magnetic 
depopulation of Landau levels or magnetoelectric subbands. One reason for 
this difference is that the peaks in the density of states become narrower, 
relative to their separation, on applying a magnetic field. (The quantum limit 
of a single occupied 1D subband has been studied in Refs. 42 and 228-230.) 

In an individual channel, aperiodic conductance fluctuations due to 
quantum interference (see Section 7) are the dominant cause of structure in 
the low-temperature conductance as a function of gate voltage (which 
corresponds to a variation of the Fermi energy), as was found in experiments 
on narrow Si inversion  layer^.^^*'^^*'^^ Warren et al.44 were able to suppress 
these fluctuations by performing measurements on an array of narrow 
channels in a Si inversion layer. In Fig. 32 we reproduce their results. The 
structure due to the electric depopulation of 1D subbands is very weak in the 
current-versus-gate-voltage plot, but a convincingly regular oscillation is 
seen if the derivative of the current with respect to the gate voltage is taken 
(this quantity is called the transconductance). Warren et al. pointed out that 
the observation of a quantum size effect in an array of 250 channels indicates 
a rather remarkable uniformity of the width and density of the individual 
channels. 

More recently a similar experimental study was performed by Ismail et 
al.231 on 100 parallel channels defined in the 2DEG of a GaAs-AlGaAs 
heterostructure. The effects were found to be much more pronounced than in 
the earlier experiment on Si inversion layer channels, presumably because of 
the much larger mean free path (estimated at lpm), which was not much 
shorter than the sample length (5 pm). Quantum size effects in the quantum 
ballistic transport regime (in particular, the conductance quantization of a 
quantum point contact) are discussed extensively in Section 13. 

In a wide 2DEG the minima of the Shubnikov-De Haas oscillations in the 
magnetoresistance are periodic in 1/B, with a periodicity A( 1/B) determined 
by the sheet density n, according to Eq. (4.29). In a narrow channel one 

'"M. J. Kearney and P. N.  Butcher, J .  Phys. C 20, 47 (1987). 
'"S. Das Sarma and X. C. Xie, Phys. Rev. B 35, 9875 (1987). 
227P. Vasilopoulos and F. M. Peeters, Phys. Rev. B 40, 10079 (1989). 
*'*H. Sakaki, Jap. J .  Appl.  Phys. 19, L735 (1980). 
'"G. Fishman, Phys. Rev. B 36, 7448 (1987). 
230J. Lee and M. 0. Vassell, J .  Phys. C 17,2525 (1984); J. Lee and H.  N .  Spector, J .  Appl .  Phys. 57, 

2 3 ' K .  Ismail, D. A. Antoniadis, and H. I. Smith, Appl. Phys. Lett. 54, I t30  (1989). 
366 (1985). 
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FIG. 32. (a) Dependence on the gate voltage of the current Z through 250 parallel narrow Si 
inversion layer channels at 1.2 K, showing the electric depopulation of subbands. (b) The effect is 
seen more clearly in the transconductance. dZ/dV,. Note the absence of universal conductance 
fluctuations, which have been averaged out by the large number of channels. Taken from A. C. 
Warren et al., ZEEE Electron Device Lett. EDL-7, 413 (1986). 
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observes an increase in A(l/B) for weak magnetic fields because the 
electrostatic confinement modifies the density of states, as discussed in 
Section 10.a. Such a deviation is of interest as a manifestation of mag- 
netoelectric subbands, but also because it can be used to estimate the effective 
channel width using the criterion W x 21,,,, for the crossover field167 Bcri, 
(the electron density in the channel, and hence lcycl, may be estimated from 
the strong-field periodicity). The phenomenon has been studied in many 

As an illustration, we reproduce in Fig. 33a an experimental mag- 
netoresistance obtained for a narrow (W x 140nm) GaAs- 
AlGaAs channel, defined using a shallow-mesa etch.63 The arrows indicate 
the magnetoresistance minima thought to be associated with magnetic 
depopulation. The assignment becomes ambiguous in weak magnetic fields, 
because of the presence of aperiodic conductance fluctuations. Nevertheless, 
the deviation from a straight line in the N versus B-' plot in Fig. 33b is 
sufficiently large to be reasonably convincing. Also shown in Fig. 33b is the 
result of a fit to a theoretical N(B) function (assuming a parabolic confining 
potential and a B-independent electron density). The parameter values found 
from this fit for the width and electron density are reasonable and agree with 
independent estimates.* 

We have limited ourselves to a discussion of transport studies, but wish to 
point out that 1D subbands have been studied succesfully by ~ a p a c i t a n c e ~ ~  
measurements and by infrared78 spectroscopy. As mentioned earlier, the 
formation of 1D subbands also requires a reformulation of the theories of 
weak localization and conductance fluctuations in the presence of boundary 
scattering. Weak localization in the case of a small number of occupied 
subbands has been studied by Tesanovic et ul.1109234 (in a zero magnetic 
field). 

We will not discuss the subject of quantum size effects further in this part 
of our review, since it has found more striking manifestations in the ballistic 
transport regime (the subject of Section 111), where conductance fluctuations 
do not play a role. The most prominent example is the conductance 
quantization of a point contact. 

11. PERIODIC POTENTIAL 

a. Lateral Superlattices 

In a crystal, the periodic potential of the lattice opens energy gaps of zero 
density of electronic states. An electron with energy in a gap is Bragg- 

pUb~iCations.36.56,57.74,79,167,21 7,218,223,232,233 

232M. Lakrimi, A. D. C. Grassie, K. M. Hutchings, J. J. Harris, and C. T. Foxon, Semicond. Sci. 

233J. J. Alsmeier, Ch. Sikorski, and U. Merkt, Phys. Rev. B 37, 4314 (1988). 
234Z. Tesanovic, J .  Phys.  C 20, L829 (1987). 

Technol. 4, 313 (1989). 



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 87 

C 

-1 
W > 
W 
-1 

3 
cn 
m - 

I 1.5 2 

e'c TI 1 
FIG. 33. (a) Magnetoresistance at 2.4K of a narrow GaAs-AlGaAs channel (as in Fig. 28). 

The arrows indicate magnetic field values assigned to the depopulation of magnetoelectric 
subbands. (b) Subband index n = N - 1 versus inverse magnetic field (crosses). The dashed line 
interpolates between theoretical points for a parabolic confining potential (circles). The 
electrostatic confinement causes deviations from a linear dependence of n on B- ' .  Taken from 
K.-F. Berggren et al., Phys. Rev. B 37, 10118 (1988). 

reflected and hence cannot propagate through the crystal. Esaki and Tsu'~~ 
proposed in 1970 that an artificial energy gap might be created by the 
epitaxial growth of alternating layers of different semiconductors. In such a 
superlattice a periodic potential of spacing a is superimposed on the crystal 
lattice potential. Typically, a z lOnm is chosen to be much larger than the 
crystal lattice spacing (0.5 nm), leading to the formation of a large number of 
narrow bands within the conduction band (minibands), separated by small 
energy gaps (minigaps). Qualitatively new transport properties may then be 
expected. For example, the presence of minigaps may be revealed under 

*35L. Esaki and R. Tsu, IBM J .  Res. Deu. 14, 61 (1970). 
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strong applied voltages by a negative differential resistance-a phenomenon 
predicted by Esaki and Tsu in their original proposal and observed 
subsequently by Esaki and Chang.236,237 In contrast to a 3D crystal lattice, a 
superlattice formed by alternating layers is 1D. As a consequence of the free 
motion in the plane of the layers, the density of states is not zero in the 
minigaps, and electrons may scatter between two overlapping minibands. Of 
interest in the present context is the possibility of defining lateral super- 
l a t t i ~ e s ~ ~ ~ , ~ ~ ~  by a periodic potential in the plane of a 2D electron gas. True 
minigaps of zero density of states may form in such a system if the potential 
varies periodically in two directions. Lateral superlattice effects may be 
studied in the linear-response regime of small applied voltages (to which we 
limit the discussion here) by varying E ,  or the strength of the periodic 
potential by means of a gate voltage. The conductivity is expected to vanish if 
E ,  is in a true minigap (so that electrons are Bragg-reflected). Cal- 
c u l a t i o n ~ ~ ~ ~ . ~ ~ ~  show pronounced minima also in the case of a 1D periodic 
potential. 

The conditions required to observe the minibands in a lateral superlattice 
are similar to those discussed in Section 10 for the observation of 1D 
subbands in a narrow channel. The mean free path should be larger than the 
lattice constant a, and 4k,T should be less than the width of a minigap near 
the Fermi level. For a weak periodic potential,94 the nth minigap is 
approximately AE, w 2V,, with V ,  the amplitude of the Fourier component of 
the potential at wave number k, = 2nn/a. The gap is centered at energy 
En w (hkn/2)’/2m. If we consider, for example, a 1D sinusoidal potential 
V ( x , y )  = Vosin(2ny/a), then the first energy gap AEl w V, occurs at 
E w (h7c/a)*/2m. (Higher-order minigaps are much smaller.) Bragg reflection 
occurs when El w E ,  (i.e., for a lattice periodicity a w &/2). Such a short- 
period modulation is not easy to achieve lithographically, however (typically 
A, = 40 nm), and the experiments on lateral superlattices discussed later are 
not in this regime. 

Warren et ~ 1 . ~ ~ ’  have observed a weak but regular structure in the 
conductance of a 1D lateral superlattice with a = 0.2pm defined in a Si 
inversion layer (using the dual-gate arrangement of Fig. 2c). Ismail et ~ 1 . ~ ~  
used a grating-shaped gate on top of a GaAs-AlGaAs heterostructure to 

236L. Esaki and L. L. Chang, Phys. Rev. Lett. 33,495 (1974). 
23’L. Esaki, Rev. Mod.  Phys. 46, 237 (1974). 
238H. Sakaki, K. Wagatsuma, J. Hamasaki, and S. Saito, Thin Solid Films 36, 497 (1976). 
239R. T. Bate, Bull. Am. Phys. SOC. 22,407 (1977). 
240M. J. Kelly, J .  Phys. C 18, 6341 (1985); Surt Sci. 170, 49 (1986). 
241P. F. Bagwell and T. P. Orlando, Phys. Rev. B 40, 3735 (1989). 
242A. C. Warren, D. A. Antoniadis, H. I. Smith, and J. Melngailis, I E E E  Electron Device Letts, 

EDL-6, 294 (1985). 
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FIG. 34. Grating gate (in black) on top of a GaAs-AlGaAs heterostructure, used to define a 

2DEG with a periodic density modulation. Taken from K. Ismail et al., Appl. Phys. Lett. 52, 1071 
(1988). 

define a lateral superlattice. A schematic cross section of their device is shown 
in Fig. 34. The period of the grating is 0.2 pm. One effect of the gate voltage is 
to change the overall carrier concentration, leading to a large but essentially 
smooth conductance variation (at 4.2 K). This variation proved to be 
essentially the same as that found for a continuous gate. As in the experiment 
by Warren et al., the transconductance as a function of the voltage on the 
grating revealed a regular oscillation. As an example, we reproduce the 
results of Ismail et al. (for various source-drain voltages) in Fig. 35. No such 
structure was found for control devices with a continuous, rather than a 
grating, gate. The observed structure is attributed to Bragg reflection in Ref. 
62. A 2D lateral superlattice was defined by Bernstein and Ferry,243 using a 
grid-shaped gate, but the transport properties in the linear response regime 
were not studied in detail. Smith et ~ 1 . ’ ~ ~  have used the split-gate technique to 
define a 2D array of 4000 dots in a high-mobility GaAs-AlGaAs hetero- 
structure (a = 0.5 pm, 1 = 10pm). When the 2DEG under the dots is depleted, 

243G. Bernstein and D. K. Ferry, J .  Vac. Sci. Technol. B 5, 964 (1987). 
244C. G. Smith, M. Pepper, R. Newbury, H. Ahmed, D. G. Hasko, I). C. Peacock, J. E. F. Frost, 

D. A. Ritchie, and G. A. C. Jones, J .  Phys. Condens. Matter 2, 3405 (1990). 



90 C. W. J. BEENAKKER AND H. VAN HOUTEN 

VG (mV) 
FIG. 35. Transconductance gm = dI/a&, of the device of Fig. 34 measured as a function of 

gate voltage for various values of the source-drain voltage. The oscillations, seen in particular at 
low source-drain voltages, are attributed to Bragg reflection in a periodic potential. Taken from 
K. Ismail et al., Appl.  Phys. Lett. Sa, 1071 (1988). 

a grid of conducting channels is formed. In this experiment the amplitude of 
the periodic potential exceeds E,.  Structure in the conductance is found 
related to the depopulation of 1D subbands in the channels, as well as to 
standing waves between the dots. The analysis is thus considerably more 
complicated than it would be for a weak periodic potential. It becomes 
difficult to distinguish between the effects due to quantum interference within 
a single unit cell of the periodic potential and the effects due to the formation 
of minibands requiring phase coherence over several unit cells. Devices with a 
2D periodic potential with a period comparable to the Fermi wavelength and 
much shorter than the mean free path will be required for the realization of 
true miniband effects. It appears that the fabrication of such devices will have 
to await further developments in the art of making nanostructures. Epitaxy 
on tilted surfaces with a staircase surface structure is being investigated for 
this p ~ r p o s e . ~ ~ , ~ ~ * ' ~ ~ * ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~  Nonepitaxial growth on Si surfaces slightly 
tilted from (100) is known to lead to miniband formation in the inversion 

A final interesting possibility is to use doping quantum wires, as 
proposed in Ref. 248. 

As mentioned, it is rather difficult to discriminate experimentally between 
true miniband effects and quantum interference effects occurring within one 

245J. M. Gaines, P. M. Petroff, H. Kroemer, R. J. Simes, R. S. Geels, and J. H. English, J .  Vuc. Sci. 

246H. Sakaki, Jap. J .  Appl.  Phys. 28, L314 (1989). 
247T. Cole, A. A. Lakhani, and P. J. Stiles, Phys. Rev. Lett. 38, 722 (1977). 
248G. E. W. Bauer and A. A. van Gorkum, in Ref. 16. 

Technol. B 6, 1378 (1988). 
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unit cell. The reason is that both phenomena give rise to structure in the 
conductance as a function of gate voltage with essentially the same periodic- 
ity. This difficulty may be circumvented by studying lateral superlattices with 
a small number of unit cells. The miniband for a finite superlattice with P unit 
cells consists of a group of P discrete states, which merge into a continuous 
miniband in the limit P + co. The discrete states give rise to closely spaced 
resonances in the transmission probability through the superlattice as a 
function of energy, and may thus be observed as a series of P peaks in the 
conductance as a function of gate voltage, separated by broad minima due to 
the minigaps. Such an observation would demonstrate phase coherence over 
the entire length L = Pa of the finite superlattice and would constitute 
conclusive evidence of a miniband. The conductance of a finite 1D super- 
lattice in a narrow 2DEG channel in the ballistic transport regime has been 
investigated theoretically by Ulloa et ~ 1 . ’ ~ ~  Similar physics may be studied in 
the quantum Hall effect regime, where the experimental requirements are 
considerably relaxed. A successful experiment of this type was recently 
performed by Kouwenhoven et ~ 1 . ’ ~ ’  (see Section 22). 

Weak-field magnetotransport in a 2D periodic potential (a grid) has been 
studied by Ferry et ~ 1 . ~ ~ ~ 9 ’ ~ ~  and by Smith et ~ 1 . ’ ~ ~  Both groups reported 
oscillatory structure in the magnetoconductance, suggestive of an 
Aharonov-Bohm effect with periodicity AB = h/eS, where S is the area of a 
unit cell of the “lattice.” In strong magnetic fields no such oscillations are 
found. A similar suppression of the Aharonov-Bohm effect in strong fields is 
found in single rings, as discussed in detail in Section 21.a. Magnetotransport 
in a 1D periodic potential is the subject of the next subsection. 

b. Guiding-Center-Drift Resonance 

The influence of a magnetic field on transport through layered super- 
lattices253 has been studied mainly in the regime where the (first) energy gap 
AE - 100meV exceeds the Landau level spacing ho, (1.7meVJT in GaAs). 
The magnetic field does not easily induce transitions between different 
minibands in this regime. Magnetotransport through lateral superlattices is 
often in the opposite regime hw, >> AE, because of the relatively large 
periodicity (a - 300nm) and small amplitude (V, - 1 meV) of the periodic 
potential. The magnetic field now changes qualitatively the structure of the 

249S. E. Ulloa, E. Castano, and G. Kirczenow, Phys. Reo. B. 41, 12350 (1990). 
”OL. P. Kouwenhoven, F. W. J. Hekking, B. J. van Wees, C. J. P. M. Harmans, C. E. Timmering, 

”lD. K. Ferry, in Ref. 14. 
*52P. A. Puechner, J. Ma, R. Mezenner, W.-P. Liu, A. M. Kriman, G. N. Maracas, G. Bernstein, 

253J. C. Maan, Festkorperprobleme 27, 137 (1987). 

and C. T. Foxon, Phys. Rev. Lett. 65, 361 (1990). 

and D. K. Ferry, Surf: Sci. 27, 137 (1987). 
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FIG. 36. (a) A brief illumination of a GaAs-AlGaAs heterostructure with an interference 
pattern due to two laser beams (black arrows) leads to a persistent periodic variation in the 
concentration of ionized donors in the AIGaAs, thereby imposing a weak periodic potential on 
the ZDEG. The resulting spatial variation of the electron density in the ZDEG is indicated 
schematically. (b) Experimental arrangement used to produce a modulated ZDEG by means of 
the “holographic illumination” of (a). The sample layout shown allows measurements of the 
resistivity parallel and perpendicular to the equipotentials. Taken from D. Weiss et al., in “High 
Magnetic Fields in Semiconductor Physics 11” (G. Landwehr, ed.). Springer, Berlin, 1989. 

energy bands, which becomes richly complex in the case of a 2D periodic 
p~ ten t i a l . ”~  Much of this structure, however, is not easily observed, and the 
experiments discussed in this subsection involve mostly the classical effect of 
a weak periodic potential on motion in a magnetic field. 

Weiss et a1.255,256 used an ingenious technique to impose a weak periodic 
potential on a 2DEG in a GaAs-AlGaAs heterostructure. They exploit the 
well-known persistent ionization of donors in AlGaAs after brief illumination 
at low temperatures. For the illumination, two interfering laser beams are 
used, which generate an interference pattern with a period depending on the 
wavelength and on the angle of incidence of the two beams. This technique, 
known as holographic illumination, is illustrated in Fig. 37. The interference 
pattern selectively ionizes Si donors in the AIGaAs, leading to a weak 

254D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976). 
255D. Weiss, K. von Klitzing, K. Ploog, and G. Weimann, Europhys. Lett. 8, 179 (1989); also in 

“High Magnetic Fields in Semiconductor Physics 11” (G. Landwehr, ed.). Springer, Berlin, 
1989. 

256D. Weiss, C. Zhang, R. R. Gerhardts, K. von Klitzing, and G. Weimann, Phys. Rev. B 39, 
13020 (1989). 
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FIG 37. Solid curves: Magnetic field dependence of the resistivity p I  for current flowing 

perpendicular to a potential grating. The experimental curve is the measurement of Weiss et 
a, ,255 ., the theoretical curve follows from the guiding-center-drift resonance. Note the phase shift 
of the oscillations, indicated by the arrows at integer 21cyc,/a. The potential grating has 
periodicity a = 382nm and is modeled by a sinusoidal potential with root-mean-square 
amplitude of E = 1.5% of the Fermi energy; The mean free path in the 2DEG is 12pm, much 
larger than a. The dash-dotted curve is the experimental resistivity pII for current flowing 
parallel to the potential grating, as measured by Weiss et al. Taken from C. W. J. Beenakker, 
Phys. Rev. Lett. 62, 2020 (1989). 

periodic modulation V ( y )  of the bottom of the conduction band in the 2DEG, 
which persists at low temperatures if the sample is kept in the dark. The 
sample layout, also shown in Fig. 36, allows independent measurements of 
the resistivity pyy(  = p l ) ,  perpendicular to, and pxx( 3 p 11) parallel to the 
grating. In Fig. 37 we show experimental results of Weiss et aL2= for the 
magnetoresistivity of a 1D lateral superlattice (a = 382nm). In a zero 
magnetic field, the resistivity tensor p is approximately isotropic: p L  and p II 
are indistinguishable experimentally (see Fig. 37). This indicates that the 
amplitude of V(y )  is much smaller than the Fermi energy EF = 11 meV. On 
application of a small magnetic field B ( 5  0.4 T) perpendicular to the 2DEG, 
a large oscillation periodic in 1/B develops in the resistivity p I  for current 
flowing perpendicular to the potential grating. The resistivity is now strongly 
anisotropic, showing only weak oscillations in pII (current parallel to the 
potential grating). In appearance, the oscillations resemble the Shubnikov- 
De Haas oscillations at higher fields, but their different periodicity and much 
weaker temperature dependence point to a different origin. 

The effect was not anticipated theoretically, but now a fairly complete and 
consistent theoretical picture has emerged from several ana- 
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lyses." ' , 2 2 7 * 2 5 7 - 2 5 9  The strong oscillations in pI result from a resonance''' 
between the periodic cyclotron orbit motion and the oscillating E x B drift of 
the orbit center induced by the electric field E E - V K  Such guiding-center- 
dr$t resonances are known from plasma physics,260 and the experiment by 
Weiss et al. appears to be the first observation of this phenomenon in the 
solid state. Magnetic quantization is not essential for these strong oscilla- 
tions, but plays a role in the transition to the Shubnikov-De Haas 
oscillations at higher fields and in the weak oscillations in p11.2279259 A 
simplified physical picture of the guiding-center-drift resonance can be 
obtained as follows.''' 

The guiding center ( X ,  Y )  of an electron at position (x, y )  having velocity 
(u,,uy) is given by X = x - vy/oc, Y =  y + v,/oc. The time derivative of the 
guiding center is X = E(y)/B, Y =  0, so its motion is parallel to the x-axis. 
This is the E x B drift. In the case of a strong magnetic field and a slowly 
varying potential (Icyc, << a), one may approximate E ( y )  x E ( Y )  to close the 
equations for X and l! This so-called adiabatic approximation cannot be 
made in the weak-field regime (Icycl k a) of interest here. We consider the case 
of a weak potential, such that eV,JEF = E << 1, with V,,, the root mean 
square of V(y) .  The guiding center drift in the x-direction is then simply 
superimposed on the unperturbed cyclotron motion. Its time average udrift is 
obtained by integrating the electric field along the orbit 

(11.1) 

For lcycl >> a the field oscillates rapidly, so only the drift acquired close to the 
two extremal points Y k  lcyc, does not average out. It follows that Udrift is 
large or small depending on whether E( Y + lcycl) and E(Y - Icyc,) have the 
same sign or opposite sign (see Fig. 38). For a sinusoidal potential 

V(y )  = V,,, sin(2ny/a), one easily calculates by averaging over Y that, for 
lcycl >> a, the mean square drift is 

(11.2) 

The guiding center drift by itself leads, for lcycl << 1, to 1D diffusion with 
diffusion coefficient 6D given by 

6 D  = 1; (v&ift)e-'/'dt = z(u&ift). (11.3) 

257R. R. Gerhardts, D. Weiss, and K. von Klitzing, Phys. Reo. Lett. 62, 1173 (1989). 
*"R. W. Winkler, J. P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 62, 1177 (1989). 
'"P. Vasilopoulos and F. M. Peeters, Phys. Reo. Lett. 63, 2120 (1989); R. R. Gerhardts and C. 

Zhang, Phys. Rev. Lett. 64, 1473 (1990). 
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+ lcyc, Y - ’CYCl 

FIG. 38. (a) Potential grating with a cyclotron orbit superimposed. When the electron is close 
to the two extremal points Y I,,,,, the guiding center at Y acquires an E x B drift in the 
direction of the arrows. (The drift along nonextremal parts of the orbit averages out, 
approximately.) A resonance occurs if the drift at one extremal point reinforces the drift at the 
other, as shown. (b) Numerically calculated trajectories for a sinusoidal potential ( E  = 0.015). The 
horizontal lines are equipotentials at integer y/a. On resonance (24,Ja = 6.25) the guiding 
center drift is maximal; off resonance (21cy0,/a = 5.75) the drift is negligible. Taken from C. W. J. 
Beenakker, Phys. Rev. Lett. 62, 2020 (1989). 

The term 6 D  is an additional contribution to the xx-element of the un- 
perturbed diffusion tensor Do, given by D:x = D:y = Do, D$ = -Do XY = 

-o,zDo, with Do = 3 z u i [ 1  + (o,z)~]-~ (cf. Section 4.c). At this point we 
assume that for lcyc, << 1 the contribution 6D from the guiding center drift is 
the dominant effect of the potential grating on the diffusion tensor D. A 
justification of this assumption requires a more systematic analysis of the 
transport problem, which is given in Ref. 11 1. Once D is known, the resistivity 
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tensor p follows from the Einstein relation p = D-’/eZp(E,), with p(E,) the 
2D density of states (cf. Section 4.b). Because of the large off-diagonal 
components of Do, an additional contribution 6 D  to D,”, modifies pre- 
dominantly pyu = pI. To leading order in E,  one finds that 

(11.4) 

with po = m/n,e2z the unperturbed resistivity. A rigorous solution”’ of the 
Boltzmann equation (for a B-independent scattering time) confirms this 
simple result in the regime a << lcyc, << 1 and is shown in Fig. 37 to be in quite 
good agreement with the experimental data of Weiss et ~ l . ~ ”  Similar 
theoretical results have been obtained by Gerhardts et aL2” and by Winkler 
et d2’* (using an equivalent quantum mechanical formulation; see below). 

As illustrated by the arrows in Fig. 37, the maxima in pI are not at integer 
21cycl/a, but shifted somewhat toward lower magnetic fields. This phase shift is 
a consequence of the finite extension of the segment of the orbit around the 
extremal points Y k Icycl, which contributes to the guiding center drift 
udrift( Y).  Equation (1 1.4) implies that pI in a sinusoidal potential grating has 
minima and maxima at approximately 

21,,,,/a(rninima) = n - a, 
21,,,,/a(maxima) = n + - order(l/n), (11.5) 

with n an integer. We emphasize that the phase shift is not universal, but 
depends on the functional form of V(y) .  The fact that the experimental phase 
shift in Fig. 37 agrees so well with the theory indicates that the actual 
potential grating in the experiment of Weiss et al. is well modeled by a 
sinusoidal potential. The maxima in pJp0 have amplitude ~ ~ ( 1 ~ / a I ~ ~ ~ ~ ) ,  which 
for a large mean free path 1 can be of order unity, even if E << 1. The guiding- 
center-drift resonance thus explains the surprising experimental finding that a 
periodic modulation of the Fermi velocity of order can double the 
resistivity. 

At low magnetic fields the experimental oscillations are damped more 
rapidly than the theory would predict, and, moreover, an unexplained 
positive magnetoresistance is observed around zero field in pI (but not in p,,). 
Part of this disagreement may be due to nonuniformities in the potential 
grating, which become especially important at low fields when the cyclotron 
orbit overlaps many modulation periods. At high magnetic fields B k 0.4T 
the experimental data show the onset of Shubnikov-De Haas oscillations, 
which are a consequence of oscillations in the scattering time z due to Landau 
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level quantization (cf. Section 4.c). This effect is neglected in the semiclassical 
analysis, which assumes a constant scattering time. 

The quantum mechanical B-dependence of z also leads to weak-field 
oscillations in p with the same periodicity as the oscillations in pI discussed 
earlier, but of much smaller amplitude and shifted in phase (see Fig. 37, where 
a maximum in the experimental r ~ , ~  around 0.3 T lines up with a minimum in 
pl). These small antiphase oscillations in p II were explained by Vasilopoulos 
and P e e t e r ~ ~ ~ ’  and by Gerhardts and Zhang259 as resulting from oscillations 
in z due to the oscillatory Landau bandwidth. The Landau levels 
En = (n - #o, broaden into a band of finite width in a periodic potential.261 
This Landau band is described by a dispersion law E,(k), where the wave 
number k is related to the classical orbit center ( X ,  Y )  by k = EB/h (cf. the 
similar relation in Section 12). The classical guiding-center-drift resonance 
can also be explained in these quantum mechanical terms, if one so desires, by 
noticing that the bandwidth of the Landau levels is proportional to the root- 
mean-square average of udritt = dE,(k) /h dk.  A maximal bandwidth thus 
corresponds to a maximal guiding center drift and, hence, to a maximal pI .  A 
maximum in the bandwidth also implies a minimum in the density of states at 
the Fermi level and, hence, a maximum in z [Eq. (4.28)]. A maximal 
bandwidth thus corresponds to a minimal p 11, whereas the B-dependence of z 
can safely by neglected for the oscillations in pI (which are dominated by the 
classical guiding-center-drift resonance). 

In a 2D periodic potential (a grid), the guiding center drift dominates the 
magnetoresistivity in both diagonal components of the resistivity tensor. 
Classically, the effect of a weak periodic potential V(x,y) on pxx and pyv 
decouples if V(x,y) is separable into V(x,y) =f(x) + g(y). For the 2D 
sinusoidal potential V(x,  y) a sin(2nxla) + sin(2ny/b), one finds that the effect 
of the grid is simply a superposition of the effects for two perpendicular 
gratings of periods a and b. (No such decoupling occurs quantum mechani- 
 ally.^^^) Experiments by Alves et ~ 1 . ~ ~ ~  and by Weiss et al.263 confirm this 
expectation, except for a disagreement in the phase of the oscillations. As 
noted, however, the phase is not universal but depends on the form of the 
periodic potential, which need not be sinusoidal. 

Because of the predominance of the classical guiding-center-drift re- 
sonance in a weak periodic potential, magnetotransport experiments are not 
well suited to study miniband structure in the density of states. Magnetocapa- 

260G. Knorr, F. R. Hansen, J. P. Lynov, H. L. Pecseli, and J. J. Rasmussen, Physica Scripta 38, 

261A. V. Chaplik, Solid State Comm., 53, 539 (1985). 
z62E. S. Alves, P. H. Beton, M. Henini, L. Eaves, P. C. Main, 0. H. Hughes, G. A. Toombs, S. P. 

263D. Weiss, K. von Klitzing, G. Ploog, and G. Weirnann, Surf Sci. (to be published). 

829 (1988). 

Beaumont, and C. D. W. Wilkinson, J. Phys. Condens. Matter 1, 8257 (1989). 
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citance m e a s ~ r e m e n t s ~ ~ ~ , ~ ~ ~ , ~ ~ ~  are a more direct means of investigation, but 
somewhat outside the scope of this review. 

111. Ballistic Transport 

12. CONDUCTION AS A TRANSMISSION PROBLEM 

In the ballistic transport regime, it is the scattering of electrons at  the 
sample boundaries which limits the current, rather than impurity scattering. 
The canonical example of a ballistic conductor is the point contact illustrated 
in Fig. 7c. The current I through the narrow constriction in response to a 
voltage difference V between the wide regions to the left and right isJinite 
even in the absence of impurities, because electrons are scattered back at the 
entrance of the constriction. The contact conductance G = Z/Vis proportional 
to the constriction width but independent of its length. One cannot therefore 
describe the contact conductance in terms of a local conductivity, as one can 
do in the diffusive transport regime. Consequently, the Einstein relation (4.10) 
between the conductivity and the diffusion constant at the Fermi level, of 
which we made use repeatedly in Section 11, is not applicable in that form to 
determine the contact conductance. The Landauer formula is an alternative 
relation between the conductance and a Fermi level property of the sample, 
without the restriction to diffusive transport. We discuss this formulation of 
conduction in Section 12.2. The Landauer formula expresses the conductance 
in terms of transmission probabilities of propagating modes at the Fermi 
level (also referred to as quantum channels in this context). Some elementary 
properties of the modes are summarized in Section 12.a. 

a. Electron Waveguide 

We consider a conducting channel in a 2DEG (an “electron waveguide”), 
defined by a lateral confining potential V(x),  in the presence of a per- 
pendicular magnetic field B (in the z-direction). In the Landau gauge 
A = (0, Bx, 0) the hamiltonian has the form 

(12.1) 

for a single spin component (cf. Section 10.a). Because the canonical 
momentum p,, along the channel commutes with X ,  one can diagonalize p y  
and A? simultaneously. For each eigenvalue hk of p,,,  the hamiltonian (12.1) 

264K. Ismail, T. P. Smith 111, W. T. Masselink, and H. I. Smith, Appl.  Phys. Lett. 55,2766 (1989). 
265W. Hansen, T. P. Smith, 111, K. Y. Lee, J. A. Brum, C. M. Knoedler, J. M. Hong, and D. P. 

Kern, Phys. Reo. Lett. 62, 2168 (1989). 
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has a discrete spectrum of energy eigenvalues E,(k), n = 1,2, . . . , correspond- 
ing to eigenfunctions of the form 

In, k )  = Y,,k(x)eiky. (12.2) 

In waveguide terminology, the index n labels the modes, and the dependence 
of the energy (or “frequency”) E,(k) on the wave number k is the dispersion 
relation of the nth mode. A propagating mode at the Fermi level has cutoff 
frequency E,(O) below E,. The wave function (12.2) is the product of a 
transverse amplitude profile Yn,k(x) and a longitudinal plane wave eiky. The 
average velocity v,(k) along the channel in state In, k )  is the expectation value 
of the y-component of the velocity operator p + eA: 

For a zero magnetic field, the dispersion relation E,(k) has the simple form 
(4.3). The group velocity u,(k) is then simply equal to the velocity hklm 
obtained from the canonical momentum. This equality no longer holds in the 
presence of a magnetic field, because the canonical momentum contains an 
extra contribution from the vector potential. The dispersion relation in a 
nonzero magnetic field was derived in Section 10.a for a parabolic confining 
potential V(x) = $mw;x2. From Eq. (10.5) one calculates a group velocity 
hk/M that is smaller than hklm by a factor of 1 + (o,/o,J2. 

Insight into the nature of the wave functions in a magnetic field can be 
obtained from the correspondence with classical trajectories. These are most 
easily visualized in a square-well confining potential, as we now discuss 
(following Ref. 266). The position (x, y) of an electron on the circle with center 
coordinates ( X ,  Y )  can be expressed in terms of its velocity v by 

x = X + uyfm,, y = Y- vx/oc,  (1 2.4) 

with w, = eB/m the cyclotron frequency. The cyclotron radius is (2mE)”’/eB, 
with E = +mu2 the energy of the electron. Both the energy E and the 
separation X of the orbit center from the center of the channel are constants 
of the motion. The coordinate Y of the orbit center parallel to the channel 
walls changes on each specular reflection. One can classify a trajectory as a 
cyclotron orbit, skipping orbit, or traversing trajectory, depending on 
whether the trajectory collides with zero, one, or both channel walls. In ( X ,  E )  
space these three types of trajectories are separated by the two parabolas 
( X  W/2)2 = 2mE(eB)-2 (Fig. 39). The quantum mechanical dispersion 
relation E,(k) can be drawn into this classical “phase diagram” because of the 
correspondence k = - XeB/h.  This correspondence exists because both k and 
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-x - 
FIG. 39. Energy-orbit center phase space. The two parabolas divide the space into four 

regions, which correspond to different types of classical trajectories in a magnetic field (clockwise 
from left: skipping orbits on one edge, traversing trajectories, skipping orbits on the other edge, 
and cyclotron orbits). The shaded region is forbidden. The region at the upper center contains 
traversing trajectories moving in both directions, but only one region is shown for clarity. Taken 
from C. W. J. Beenakker et al., Superlattices and Microstructures 5, 127 (1989). 

X are constants of the motion and it follows from the fact that the component 
hk along the channel of the canonical momentum p = mv - eA equals 

hk = mu, - eA, = mu, - eBx = -eBX (12.5) 

in the Landau gauge. 
In Fig. 40 we show E,(k) both in weak and in strong magnetic fields, 

calculated266 for typical parameter values from the Bohr-Sommerfeld 
quantization rule discussed here. The regions in phase space occupied by 
classical skipping orbits are shaded. The unshaded regions contain cyclotron 
orbits (at small E )  and traversing trajectories (at larger E )  (cf. Fig. 39). The 
cyclotron orbits correspond quantum mechanically to states in Landau levels. 
These are the flat portions of the dispersion relation at energies 
E ,  = (n  - #KO,. The group velocity (12.3) is zero in a Landau level, as one 
would expect from the correspondence with a circular orbit. The traversing 
trajectories correspond to states in magnetoelectric subbands, which interact 

266C. W. J. Beenakker, H. van Houten, and B. J. van Wees, Superlattices and Microstructures 5, 
127 (1989). 
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FIG. 40. Dispersion relation E,(k), calculated for parameters: (a) W = 100nm, B = 1 T; (b) 
W =  200nm, B = 1.5T. The horizontal line at 17meV indicates the Fermi energy. The shaded 
area is the region of classical skipping orbits and is bounded by the two parabolas shown in Fig. 
39(with the correspondence k = - XeB/h). Note that in (a) edge states coexist at the Ferrni level 
with states interacting with both boundaries (B < Bcri1 = 2hk,/eB), while in (b) all states at the 
Fermi level interact with one boundary only (B > B,J. Taken from C. W. J. Beenakker et al., 
Superlattices and Microstructures 5, 127 (1989). 



102 C. W. J. BEENAKKER A N D  H. VAN HOUTEN 

with both the opposite channel boundaries and have a nonzero group 
velocity. The skipping orbits correspond to edge states, which interact with a 
single boundary only. The two sets of edge states (one for each boundary) are 
disjunct in (k,  E )  space. Edge states at opposite boundaries move in opposite 
directions, as is evident from the correspondence with skipping orbits or by 
inspection of the slope of E,(k) in the two shaded regions in Fig. 40. 

If the Fermi level lies between two Landau levels, the states at the Fermi 
level consist only of edge states if B > Bcrit, as in Fig. 40b. The “critical” field 
Bcri, = 2hk,/eW is obtained from the classical correspondence by requiring 
that the channel width W should be larger than the cyclotron diameter 
2AkF/eB at the Fermi level. This is the same characteristic field that played a 
role in the discussion of magneto size effects in Sections 5 and 10. At fields 
B < Bcri,, as in Fig. 40a, edge states coexist at the Fermi level with 
magnetoelectric subbands. In still lower fields B < Bthres all states at the 
Fermi level interact with both edges. The criterion for this is that W should be 
smaller than the transverse wavelength267 1, = (h/2k,eB)1/3 of the edge 
states, so the threshold field Bthres - hfek, W3.  Contrary to initial expecta- 
tions,268 this lower characteristic field does not appear to play a decisive role 
in magneto size effects. 

A quick way to arrive at the dispersion relation E,(k),  which is sufficiently 
accurate for our purposes, is to apply the Bohr-Sommerfeld quantization 

to the classical motion in the x-direction: 

(12.6) 

The integral is over one period of the motion. The phase shift y is the sum of 
the phase shifts acquired at the two turning points of the projection of the 
motion on the x-axis. The phase shift upon reflection at the boundary is n, to 
ensure that incident and reflected waves cancel (we consider an infinite 
barrier potential at which the wave function vanishes). The other turning 
points (at which v, varies smoothly) have a phase shift of - ~ / 2 . ~ ~  Conseq- 
uently, for a traversing trajectory y = n + n = 0 (mod2n), for a skipping 
orbit y = n - n/2 = 4 2 ,  and for a cyclotron orbit y = -n/2 - 4 2  = n 
(mod2n). In the Landau gauge one has p ,  = mu, = eB(Y- y), so Eq. (12.6) 
takes the form 

e (12.7) 

Z67R. E. Prange and T.-W. Nee, Phys. Rev. 168, 779 (1968). 
z68C. W. J.  Beenakker and H. van Houten, Phys. Rev. Lett. 60, 2406 (1988). 
269A. M. Kosevich and I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 29,743 (1955) [Sou. Phys. JETP 2,646 

(1956)l; M. S. Khaikin, Adu. Phys. 18, 1 (1969). 
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FIG. 41. Classical trajectories In a magnetic field. The 
flux through the shaded area is quantized according to 

b the Bohr-Sommerfeld quantization rule (12.7). The 
shaded area in (b) is bounded by the channel walls and 
the circle formed by the continuation (dashed) of one 
circular arc of the traversing trajectory. 

This quantization condition has the appealing geometrical interpretation 
that n - y/2n flux quanta hle are contained in the area bounded by the 
channel walls and a circle of cyclotron radius (2mE)'I2/eB centered at X (cf. 
Fig. 41). It is now straightforward to find for each integer n and coordinate X 
the energy E that satisfies this condition. The dispersion relation E,(k) then 
follows on identifying k = -XeB/h, as shown in Fig. 40. 

The total number N of propagating modes at energy E is determined by 
the maximum flux @,,, contained in an area bounded by the channel walls 
and a circle of radius (2mE)1'2/eB, according to N = Int[e@,,,,,/h + y/2n]. 
Note that a maximal enclosed flux is obtained by centering the circle on the 
channel axis. Some simple geometry then leads to the result" (10.8), which is 
plotted together with that for a parabolic confinement in Fig. 31. Equation 
(10.8) has a discontinuity at magnetic fields for which the cyclotron diameter 
equals the channel width, due to the jump in the phase shift y as one goes 
from a cyclotron orbit to a traversing trajectory. This jump is an artifact of 
the present semiclassical approximation in which the extension of the wave 
function beyond the classical orbit is ignored. Since the discontinuity in N is 
at most k 1, it is unimportant in many applications. More accurate formulas 
for the phase shift y ,  which smooth out the discontinuity, have been derived in 
Ref. 270. If necessary, one can also use more complicated but exact solutions 
of the Schrodinger equation, which are known.267 

b. Landauer Formula 

Imagine two wide electron gas reservoirs having a slight difference 6n in 
electron density, which are brought into contact by means of a narrow 
channel, as in Fig. 42a. A diffusion current J will flow in the channel, carried 
by electrons with energies between the Fermi energies E ,  and E ,  + hp in the 
low- and high-density regions. For small an, one can write for the Fermi 
energy difference (or chemical potential difference) 8p = Gn/p(E,), with p(E,) 
the density of states at E ,  in the reservoir (cf. Section 4.1). The diffusion 

"OR. Vawter, Phys. Rev. 174,749 (1968); A. Isihara and K. Ebina, J .  Phys. C 21, Lt079 (1988). 
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constant (or “diffu~ance”)~ b is defined by J = bSn and is related to the 
conductance G by 

G = e2p(E,)D”. (12.8) 

Equation (12.8) generalizes the Einstein relation (4.10) and is derived in a 
completely analogous way [by requiring that the sum of drift current GVje 
and diffusion current d6n be zero when the sum of the electrostatic potential 
difference eV and chemical potential difference Gn/p(EF) vanishes]. 

Since the diffusion current (at low temperatures) is carried by electrons 
within a narrow range dp above E,, the diffusance can be expressed in terms 
of Fermi level properties of the channel (see below). The Einstein relation 
(12.8) then yields the required Fermi level expression of the conductance. This 
by no means implies that the drift current induced by an electrostatic 
potential difference is carried entirely by electrons at the Fermi energy. To the 
contrary, all electrons (regardless of their energy) acquire a nonzero drift 
velocity in an electric field. This point has been the cause of some confusion in 
the literature on the quantum Hall effect, so we will return to it in Section 
18.c. In the following we will refer to electrons at the Fermi energy as 
“current-carrying electrons” and show that “the current in the channel is 
shared equally among the modes at the Fermi level.” These and similar 
statements should be interpreted as referring to the diffusion problem, where 
the current is induced by density differences without an electric field. We 
make no attempt here to evaluate the distribution of current in response to an 
electric field in a system of uniform density. That is a difficult problem, for 
which one has to determine the electric field distribution self-consistently 
from Poisson’s and Boltzmann’s equations. Such a calculation for a quantum 
point contact has been performed in Refs. 271 and 272. Fortunately, there is 
no need to know the actual current distribution to determine the con- 
ductance, in view of the Einstein relation (12.8). The distribution of current 
(and electric field) is of importance only beyond the regime of a linear relation 
between current and voltage. We will not venture beyond this linear response 
regime. 

To calculate the diffusance, we first consider the case of an ideal electron 
waveguide between the two reservoirs. By “ideal” it is meant that within the 
waveguide the states with group velocity pointing to the right are occupied 
up to EF + Sp, while states with group velocity to the left are occupied up to 
EF and empty above that energy (cf. Fig. 42b). This requires that an electron 
near the Fermi energy that is injected into the waveguide by the reservoir at 
EF + Sp propagates into the other reservoir without being reflected. (The 

*’‘I. B. Levinson, Zh. Eksp .  Teor. Fiz. 95, 2175 (1989) [Sou. Phys. J E T P  68, 1257 (1989)l. 
272M. C. Payne, J. Phys. Condens. Matter 1,4931 (1989); 4939 (1989). 
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FIG. 42 (a) Narrow channel connecting two wide electron gas regions, having a chemical 
potential difference &I. (b) Schematic dispersion relation in the narrow channel. Left-moving 
states ( k  > 0) are filled up to chemical potential E,, right-moving states up to E,  + 6 p  (solid 
dots). Higher-lying states are unoccupied (open dots). 

physical requirements for this to happen will be discussed in Section 13.) The 
amount of diffusion current per energy interval carried by the right-moving 
states (with k < 0) in a mode n is the product of density of states p,- and group 
velocity u,. Using Eqs. (4.4) and (12.3), we find the total current J ,  carried by 
that mode to be 

independent of mode index and Fermi energy. The current in the channel is 
shared equally among the N modes at  the Fermi level because of the 
cancellation of group velocity and density states. We will return to this 
equipartition rule in Section 13, because it is at the origin of the quantiza- 
tion6,’ of the conductance of a point contact. 

Scattering within the narrow channel may reflect part of the injected 
current back into the left reservoir. If a fraction T, of J ,  is transmitted to the 
reservoir at the right, then the total diffusion current in the channel becomes 
J =  (2/h)dpx:= T.. (Unless stated otherwise, the formulas in the remainder 
of this review refer to the case gs = 2, gv = 1 of twofold spin degeneracy and a 
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single valley, appropriate for most of the experiments.) Using dp = dn/p(E,), 
J = ban, and the Einstein relation (12.8), one obtains the result 

which can also be written in the form 

(1 2.10a) 

(1 2.1 Ob) 

where T, = If=, lt,,J2 is expressed in terms of the matrix t of transmission 
probability amplitudes from mode n to mode rn. This relation between 
conductance and transmission probabilities at the Fermi energy is referred to 
as the Landauer formula because of Landauer's pioneering 1957 paper! 
Derivations of Eq. (12.10) based on the Kubo formula of linear response 
theory have been given by several authors, both for zero 143,273.274 and 
nonzero275,276 magnetic fields. The identification of G as a contact con- 
ductance is due to Imry.' In earlier work Eq. (12.10) was considered 
suspect27 7-279 be cause it gives a jinite conductance for an ideal (ballistic) 
conductor, and alternative expressions were proposed188*280-282 that were 
considered to be more realistic. (In one dimension these alternative formulas 
reduce to the original Landauer formula4 G = (e2/h)T(1 - T)- ' ,  which gives 
infinite conductance for unit transmission since the contact conductance e2/h 
is ignored.') For historical accounts of this controversy, from two different 
points of view, we refer the interested reader to papers by L a n d a ~ e r ~ ~ ~  and 
by Stone and S ~ a f e r . ' ~ ~  We have briefly mentioned this now-settled con- 
troversy, because it sheds some light onto why the quantization of the contact 
conductance had not been predicted theoretically prior to its experimental 
discovery in 1987. 

Equation (12.10) refers to a two-terminal resistance measurement, in which 
the same two contacts (modeled by reservoirs in Fig. 42a) are used to drive a 
current through the system and to measure the voltage drop. More generally, 
one can consider a multireservoir conductor as in Fig. 43 to model, for 

"'E. N.  Economou and C. M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981). 
274A. D. Stone and A. Szafer, IBM J .  Res. Deu. 32, 384 (1988). 
275J. Kucera and P .  Streda. J .  Phys. C 21, 4357 (1988). 
276H. U. Baranger and A. D. Stone, Phys. Rev. B 40, 8169 (1989). 
277D. J .  Thouless, Phys. Rev. Lett. 47, 972 (1981). 
278R. Landauer, Phys. Lett. A 85, 91 (1981). 
279E. N. Engquist and P. W. Anderson, Phys. Rev. B 24, 1151 (1981). 
280P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. B 22,3519 (1980). 
"'D. C. Langreth and E. Abrahams, Phys. Rev. B 24, 2978 (1981). 
z82M. Ya. Azbel, J .  Phys. C 14, L225 (1981). 
"'R. Landauer, J .  Phys. Condens. Matter 1, 8099 (1989); also in Ref. 15. 
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u 
P 6  PS 

FIG. 43. Generalization of the geometry of Fig. 42a to a multireservoir conductor. 

example, four-terminal resistance measurements in which the current source 
and drain are distinct from the voltage probes. The generalization of the 
Landauer formula (12.10) to multiterminal resistances is due to Biittiker.’ Let 
T,+, be the total transmission probability from reservoir u to p: 

(12.11) 

Here N ,  is the number of propagating modes in the channel (or “lead”) 
connected to reservoir u (which in general may be different from the number 
N ,  in lead p), and tSa, mn is the transmission probability amplitude from mode 
n in lead u to mode m in lead p. The leads are modeled by ideal electron 
waveguides, in the sense discussed before, so that the reservoir u at chemical 
potential pa above E ,  injects into lead u a (charge) current (2e/h)Napa. A 
fraction T,,,/N, of that current is transmitted to reservoir p, and a fraction 
T , , J N ,  = R,  I N ,  is reflected back into reservoir u, before reaching one of the 
other reservoirs. The net current I ,  in lead u is thus given by5 

(12.12) 

The chemical potentials of the reservoirs are related to the currents in the 
leads via a matrix of transmission and reflection coefficients. The sums of 
columns or rows of this matrix vanish: 

(12.13) 

(12.14) 

Equation (12.13) follows from current conservation, and Eq. (12.14) follows 
from the requirement that an increase of all the chemical potentials by the 
same amount should have no effect on the net currents in the leads. 

Equation (12.12) can be applied to a measurement of the four-terminal 
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resistance Rap, yd = V / I ,  in which a current I flows from contact a to p and a 
voltage difference V is measured between contacts y and 6. Setting 
I ,  = I = - - I p ,  and I , .  = 0 for a‘ # a, fl, one can solve the set of linear 
equations (12.12) to determine the chemical potential difference py - pa. 
(Only the direrences in chemical potentials can be obtained from the n 
equations (12.12), which are not independent in view of Eq. (12.14). By fixing 
one chemical potential at zero, one reduces the number of equations to n - 1 
independent ones.) The four-terminal resistance Rap, y J  = ( py - pa)/eZ is then 
obtained as a rational function of the transmission and reflection proba- 
bilities. We will refer to this procedure as the Landauer-Biittiker formalism. It 
provides a unified description of the whole variety of electrical transport 
experiments discussed in this review. 

The transmission probabilities have the symmetry 

tpa,nm(B) = t,p.mn(-B) 3 T,-,(B) = q-a(-BB)* (12.15) 

Equation (12.15) follows by combining the unitarity of the scattering matrix 
tP = t-’, required by current conservation, with the symmetry 
t*( - B) = t- ‘(B), required by time-reversal invariance (* and t denote 
complex and Hermitian conjugation, respectively). As shown by Biit- 
tiker,5*2s4 the symmetry (12.15) of the coefficients in Eq. (12.12) implies a 
reciprocity relation for the four-terminal resistance: 

Raj3,y8(B) = R y J , a p ( - B ) .  (1 2.16) 

The resistance is unchanged if current and voltage leads are interchanged 
with simultaneous reversal of the magnetic field direction. A special case of 
Eq. (12.16) is that the two-terminal resistance is even in B. In the 
diffusive transport regime, the reciprocity relation for the resistance follows 
from the Onsager-Casimir relation285 p(B) = pT( -p )  for the resistivity 
tensor (T denotes the transpose). Equation (12.16) holds also in cases that the 
concept of a local resistivity breaks down. One experimental demon- 
strations’ of the validity of the reciprocity relation in the quantum ballistic 
transport regime will be discussed in Section 14. Other demonstrations have 
been given in Refs. 286-289. We emphasize that strict reciprocity holds only 

284M. Biittiker, IBM J .  Res. Dev. 32, 317 (1988). 
285H. B. G. Casimir, Rev. Mod.  Phys. 17, 343 (1945); Philips Res. Rep. 1, 185 (1946); L. Onsager, 

Phys. Rev. 38, 2265 (1931; see also S. R. de Groot and P. Mazur, “Non-Equilibrium 
Thermodynamics.” Dover, New York, 1984. 

Z86A. D. Benoit, S. Washburn, C. P. Umbach, R. B. Laibowitz, and R. A. Webb, Phys. Rev. Lett. 
57, 1765 (1986). 

287H. H. Sample, W. J. Bruno, S. B. Sample, and E. K. Sichel, J .  Appl.  Phys. 61, 1079 (1987). 
’“L. L. Soethout, H. van Kempen, J. T. P. W. van Maarseveen, P. A. Schroeder, and P. 

289G. Timp, H. U .  Baranger, P. devegvar, J. E. Cunningham, R. E. Howard, R. Behringer, and P. 
Wyder, J .  Phys. F 17, L129 (1987). 

M. Mankiewich, Phys. Rev. Lett. 60, 2081 (1988). 



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 109 

in the linear response limit of infinitesimally small currents and voltages. 
Deviations from Eq. (12.16) can occur experimentally290 due to nonlinearities 
from quantum i n t e r f e r e n ~ e , ' ~ ~ , ~ ~ ~  which in the case of a long phase 
coherence time zg persist down to very small voltages V X h/ez,. Magnetic 
impurities can be another source of deviations from reciprocity if the applied 
magnetic field is not sufficiently strong to reverse the magnetic moments on 
field reversal. The large & B asymmetry of the two-terminal resistance of a 
point contact reported in Ref. 292 has remained unexplained (see Section 21). 

The scattering matrix t in Eq. (12.15) describes elastic scattering only. 
Inelastic scattering is assumed to take place exclusively in the reservoirs. That 
is a reasonable approximation at temperatures that are sufficiently low that 
the size of the conductor is smaller than the inelastic scattering length (or the 
phase coherence length if quantum interference effects play a role). Reservoirs 
thus play a dual role in the Landauer-Biittiker formalism: On the one hand, 
a reservoir is a model for a current or voltage contact; on the other hand, a 
reservoir brings inelastic scattering into the system. The reciprocity relation 
(12.16) is unaffected by adding reservoirs to the system and is not restricted to 
elastic scattering.284 More realistic methods to include inelastic scattering in 
a distributed way throughout the system have been proposed, but are not yet 
implemented in an actual calculation.293~z94 

13. QUANTUM POINT CONTACTS 

Many of the principal phenomena in ballistic transport are exhibited in 
the cleanest and most extreme way by quantum point contacts. These are 
short and narrow constrictions in a 2DEG, with a width of the order of the 
Fermi ~ a v e l e n g t h . ~ . ~ . ~ ~  The conductance of quantum point contacts is 
quantized in units of 2e2/h. This quantization is reminiscent of the quantiza- 
tion of the Hall conductance, but is measured in the absence of a magnetic 
field. The zero-field conductance quantization and the smooth transition to 
the quantum Hall effect on applying a magnetic field are essentially 
consequences of the equipartition of current among an integer number of 
propagating modes in the constriction, each mode carrying a current of 2ez/h 
times the applied voltage b! Deviations from precise quantization result from 
nonunit transmission probability of propagating modes and from nonzero 
transmission probability of evanescent (nonpropagating) modes. Experiment 

290P. G. N. de Vegvar, G. Timp, P. M. Mankiewich, J. E. Cunningham, R. Behringer, and R. E. 

291A. I. Larkin and D. E. Khmel'nitskii, Zh. Eksp. Teor. Fiz. 91, 1815 (1986) [Sou. Phys. J E T P  64, 

292P. H. M. van Loosdrecht, C. W. J. Beenakker, H. van Houten, J. G. Williamson, B. J. van 

293S. Datta, Phys. Rev. B 40, 5830 (1989). 
294S. Feng. Phys. Lett. A 143, 400 (1990). 

Howard, Phys. Rev. B 38,4326 (1988). 

1075 (1986)l. 

Wees, J. E. Mooij, C. T. Foxon, and J .  J .  Harris, Phys. Rev. B 38, 10162 (1988). 
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and theory in a zero magnetic field are reviewed in Section 13.a. The effect of a 
magnetic field is the subject of Section 13.b, which deals with depopulation of 
subbands and suppression of backscattering by a magnetic field, two 
phenomena that form the basis for an understanding of magnetotransport in 
semiconductor nanostructures. 

a. Conductance Quantization 

(1) Experiments. The study of electron transport through point contacts in 
metals has a long history, which goes back to Maxwell’s  investigation^^^^ of 
the resistance of an orifice in the diffusive transport regime. Ballistic transport 
was first studied by S h a r ~ i n , ’ ~ ~  who proposed and subsequently realizedz9’ 
the injection and detection of a beam of electrons in a metal by means of point 
contacts much smaller than the mean free path. With the possible exception 
of the scanning tunneling microscope, which can be seen as a point contact on 
an atomic scale,298-303 these studies in metals are essentially restricted to the 
classical ballistic transport regime because of the extremely small Fermi 
wavelength (A, x 0.5 nm). Point contacts in a 2DEG cannot be fabricated by 
simply pressing two wedge- or needle-shaped pieces of material together (as 
in bulk semiconductors304 or rnetals3O5), since the electron gas is confined at 
the GaAs- AlGaAs interface in the interior of the heterostructure. Instead, 
they are defined e l e c t r ~ s t a t i c a l l y ~ ~ . ~ ~  by means of a split gate on top of the 
heterostructure (a schematical cross-sectional view was given in Fig. 4b, while 
the micrograph Fig. 5b shows a top view of the split gate of a double-point 
contact device; see also the inset in Fig. 44). In this way one can define short 
and narrow constrictions in the 2DEG, of variable width 0 S W S 250nm 
comparable to the Fermi wavelength A, z 40 nm and much shorter than the 
mean free path 1 x 10,um. 

Van Wees et aL6 and Wharam et a1.’ independently discovered a sequence 
of steps in the conductance of such a point contact as its width was varied by 
means of the voltage on the split gate (see Fig. 44). The steps are near integer 
multiples of 2ez/h z (13 kR)-’, after correction for a gate-voltage- 
independent series resistance from the wide 2DEG regions. An elementary 

295J. C. Maxwell, “A Treatise on Electricity and Magnetism.” Clarendon, Oxford, 1904. 
296Yu. V. Sharvin, Zh. Eksp. Teor. Fit. 48, 984 (1965) [Sou. Phys. JETP 21, 655 (1965)l. 
297Yu. V. Sharvin and N. I. Bogatina, Zh. Eksp. nor .  Phys. 56,772 (1969) [Sou. Phys. JETP 29, 

298J. K. Gimzewski and R.  Moller, Phys. Rev. B 36, 1284 (1987). 
299N. D. Lang, Phys. Rev. B 36, 8173 (1987). 
300J. Ferrer, A. Martin-Rodero, and F. Flores, Phys. Rev. B 38, 10113 (1988). 
301N. D. Lang, Comm. Cond. Matt. Phys. 14, 253 (1989). 
302N. D. Lang, A. Yacoby, and Y. Imry, Phys. Reu. Lett. 63, 1499 (1989). 
303N. Garcia and H. Rohrer, J .  Phys. Condens. Matter 1, 3737 (1989). 
304R. Trzcinski, E. Gmelin, and H. J.  Queisser, Phys. Reu. B 35, 6373 (1987). 
305A. G. M. Jansen, A. P. van Gelder, and P. Wyder, J .  Phys. C 13, 6073 (1980). 

419 (1969)l. 
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gate voltage (V) 

FIG. 44. Point contact conductance as a function of gate voltage at 0.6K, demonstrating the 
conductance quantization in units of 2ez/h. The data are obtained from the two-terminal 
resistance after subtraction of a background resistance. The constriction width increases with 
increasing voltage on the gate (see inset). Taken from B. J. van Wees et al., Phys. Rev. Lett. 60,848 
(1988). 

explanation of this effect relies on the fact that each 1D subband in the 
constriction contributes 2e2/h to the conductance because of the cancellation 
of the group velocity and the ID density of states discussed in Section 12. 
Since the number N of occupied subbands is necessarily an integer, it follows 
from this simple argument that the conductance G is quantized, 

G = (2eZ/h)N, (13.1) 

as observed experimentally. A more complete explanation requires an explicit 
treatment of the mode coupling at the entrance and exit of the constriction, as 
discussed later. 

The zero-field conductance quantization of a quantum point contact is not 
as accurate as the Hall conductance quantization in strong magnetic fields. 
The deviations from exact quantization are t y p i ~ a l l y ~ * ~ * ~ ~ ~  I%, while in the 
quantum Hall effect one obtains routinelyg7 an accuracy of 1 part in lo7. It is 
unlikely that a similar accuracy will be achieved in the case of the zero-field 
quantization, one reason being the additive contribution to the point contact 
resistance of a background resistance whose magnitude cannot be deter- 
mined precisely. The largest part of this background resistance originates in 
the ohmic contacts307 and can thus be eliminated in a four-terminal 
measurement of the contact resistance. The position of the additional voltage 

306G. Timp, R. Behringer, S. Sampere, J. E. Cunningham, and R. E. Howard, in Ref. 15; see also 

30’H. van Houten, C. W. J. Beenakker, and B. J. van Wees, in Ref. 9. 
G. Timp in Ref. 9. 
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probes on the wide 2DEG regions has to be more than an inelastic scattering 
length away from the point contact so that a local equilibrium is established. 
A residual background resistance307 of the order of the resistance p of a 
square is therefore unavoidable. In the experiments of Refs. 6 and 7 one has 
p z 20 R, but lower values are possible for higher-mobility material. It would 
be of interest to investigate experimentally whether resistance plateaux 
quantized to such an accuracy are achievable. It should be noted, however, 
that the degree of flatness of the plateaux and the sharpness of the steps in 
the present experiments vary among devices of identical design, indicating 
that the detailed shape of the electrostatic potential defining the constriction 
is important. There are many uncontrolled factors affecting this shape, such 
as small changes in the gate geometry, variations in the pinning of the Fermi 
level at the free GaAs surface or at the interface with the gate metal, doping 
inhomogeneities in the heterostructure material, and trapping of charge in 
deep levels in AlGaAs. 

On increasing the temperature, one finds experimentally that the plateaux 
acquire a finite slope until they are no longer resolved.308 This is a 
consequence of the thermal smearing of the Fermi-Dirac distribution (4.9). If 
at T = 0 the conductance G(E,, T )  has a step function dependence on the 
Fermi energy EF, at finite temperatures it has the form3’’ 

Here E ,  denotes the energy of the bottom of the nth subband [cf. Eq. (4.3)]. 
The width of the thermal smearing function df/dE, is about 4k,T, so the 
conductance steps should disappear for T k AE/4k, - 4K (here AE is the 
subband splitting at the Fermi level). This is confirmed both by experi- 
ment308 and by numerical calculations (see below). 

Interestingly, it was found e~per imenta l ly~ .~  that in general a finite 
temperature yielded the most pronounced and flat plateaux as a function of 
gate voltage in the zero-field conductance. If the temperature is increased 
beyond this optimum (which is about 0.5 K), the plateaux disappear because 
of the thermal averaging discussed earlier. Below this temperature, an 
oscillatory structure may be superimposed on the conductance plateaux. This 
phenomenon depends on the precise shape of the constriction, as discussed 
later. A small but finite voltage drop across the constriction has an effect that 
is qualitatively similar to that of a finite ternperat~re.~” This is indeed borne 
out by e~periment.~” (Experiments on conduction through quantum point 

308B. J. van Wees, L. P. Kouwenhoven, E. M. M. Willems, C. J. P. M. Harmans, J. E. Mooij, H. 
van Houten, C. W. J. Beenakker, J.  G. Williamson, and C. T. Foxon, submitted to Phys. 
Rev. B .  

309P. F. Bagwell and T. P. Orlando, Phys. Reu. B 40, 1456 (1989). 
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FIG. 45 (a) Classical ballistic transport through a point contact induced by a concentration 
difference Sn, or electrochemical potential difference eV, between source (s) and drain (d). (b) The 
net current through a quantum point contact is carried by the shaded region in k-space. In a 
narrow channel the allowed states lie on the horizontal lines, which correspond to quantized 
values for k, = nn /w  and continuous values for k,. The formation of these 1D subbands gives 
rise to a quantized conductance. Taken from H. van Houten et al., in "Physics and Technology of 
Submicron Structures" (H. Heinrich, G. Bauer, and F. Kuchar, eds.). Springer, Berlin, 1988; in 
"Nanostructure Physics and Fabrication"(M. Reed and W. P. Kirk, eds.). Academic, New York, 
1989. 

contacts at larger applied voltages in the nonlinear transport regime have 
been reviewed in Ref. 307). 

Theoretically, one would expect the conductance quantization to be 
preserved in longer channels than those used in the original experiments6s7 
(in which typically L - W - 100nm). Experiments on channels longer than 
about 1 pm did not show the q u a n t i z a t i ~ n , ~ ~ ~ . ~ ~ ~ ~ ~ ~ ~  however, although their 
length was well below the transport mean free path in the bulk (about 10,um). 
The lack of clear plateaux in long constrictions is presumably due to 
enhanced backscattering inside the constriction, either because of impurity 
scattering (which may be e n h a n ~ e d ~ ' ~ . ~ ~ '  du e to the reduced screening in a 
quasi-one-dimensional electron gas72) or because of boundary scattering at 
channel wall irregularities. As mentioned in Section 5, Thornton et a1.1°7 
have found evidence for a small (5%) fraction of diffuse, rather than specular, 
reflections at boundaries defined electrostatically by a gate. In a 200-nm-wide 
constriction this leads to an effective mean free path of about 
200 nm/0.05 4 pm, comparable to the constriction length of devices that do 
not exhibit the conductance quantization."3,307 

(2)Theory. It is instructive to first consider classical 2D point contacts in 
some detai1.31.311 The ballistic electron flow through a point contact is 
illustrated in Fig. 45a in real space, and in Fig. 45b in k-space, for a small 

3'0G. Timp, in Ref. 10. 
311H. van Houten and C. W. J. Beenakker, in Ref. 15. 
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excess electron density Sn at one side of the point contact. At low temper- 
atures this excess charge moves with the Fermi velocity uF. The flux normally 
incident on the point contact is Snu,(cos 48(cos $)), where 8(x) is the unit 
step function and the symbol ( ) denotes an isotropic angular average (the 
angle 4 is defined in Fig. 45a). In the ballistic limit 1 >> W the incident flux is 
fully transmitted, so the total diffusion current J through the point contact is 
given by 

d 4  1 cos 4 - = - Wv,Sn. 
2n 7c 

J = WSnu, (13.3) 

The diffusance b = J / S n  = (l/n) Wu,; therefore, the conductance G = 

eZp(EF)E becomes (using the 2D density of states (4.2) with the appropriate 
degeneracy factors gs  = 2, gv = 1) 

2e2 k ,  W 
G = _ -  . in 2D. 

h n  
(13.4) 

Eq. (13.4) is the 2D analogue6 of Sharvin’s well-known expressionz96 for the 
point contact conductance in three dimensions, 

2e2 kgS 
G=--  in 3D, 

h 4n ’ 
(1 3.5) 

where now S is the area of the point contact. The number of propagating 
modes for a square-well lateral confining potential is N = Int [ k ,  W/n] in 2D, 
so Eq. (13.4) is indeed the classical limit of the quantized conductance (13.1). 

Quantum mechanically, the current through the point contact is equiparti- 
tioned among the 1D subbands, or transverse modes, in the constriction. The 
equipartitioning of current, which is the basic mechanism for the conductance 
quantization, is illustrated in Fig. 45b for a square-well lateral confining 
potential of width W The 1D subbands then correspond to the pairs of 
horizontal lines at k ,  = fnn/W, with n = 1, 2, . . . , N and N = IntCk, W/7c]. 
The group velocity u, = hk,/m is proportional to cos 4 and thus decreases 
with increasing n. However, the decrease in u, is compensated by an increase 
in the 1D density of states. Since p n  is proportional to the length of the 
horizontal lines within the dashed area in Fig. 45b, p n  is proportional to 
l/cos 4 so that the product u , p ,  does not depend on the subband index. We 
emphasize that, although the classical formula (13.4) holds only for a square- 
well lateral confining potential, the quantization (13.1) is a general result for 
any shape of the confining potential. The reason is simply that the 
fundamental cancellation of the group velocity u, = dE,(k)/hdk and the 1D 
density of states p: = (ndE,(k)/dk)-’ holds regardless of the form of the 
dispersion relation E,(k). For the same reason, Eq. ( 1  3.1) is equally applicable 



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 1 15 

in the presence of a magnetic field, when magnetic edge channels at the Fermi 
level take over the role of 1D subbands. Equation (13.1) thus implies a 
continuous transition from the zero-field quantization to the quantum Hall 
effect, as we will discuss in Section 13.b. 

To analyze deviations from Eq. (13.1) it is necessary to solve the 
Schrodinger equation for the wave functions in the narrow point contact and 
the adjacent wide regions and to match the wave functions and their 
derivatives at the entrance and exit of the constriction. The resulting 
transmission coefficients determine the conductance via the Landauer for- 
mula (12.10). This mode coupling problem has been solved numerically for 
point contacts of a variety of and analytically in special 
geometries. 2p324 Wh en considering the mode coupling at the entrance and 
exit of the constriction, one must distinguish gradual (adiabatic) from abrupt 
transitions from wide to narrow regions. 

The case of an adiabatic constriction has been studied by Glazman et 
~ l . , ~ "  by Yacoby and Imry326 and by P a ~ n e . ~ ~ '  If the constriction width 
W ( x ]  changes sufficiently gradually, the transport through the constriction is 
adiabatic (i.e., without intersubband scattering). The transmission coefficients 
then vanish, lt,,)2 = 0, unless n = m < N m i n ,  with Nmin the smallest number of 
occupied subbands in the constriction. The conductance quantization (1 3.1) 
now follows immediately from the Landauer formula (12.10). The criterion 
for adiabatic transport is326 d W/dx 5 l / N ( x ) ,  with N ( x )  % k, W(x)/z  the local 
number of subbands. As the constriction widens, N ( x )  increases and adiabat- 
icky is preserved only if W ( x )  increases more and more slowly. In practice, 
adiabaticity breaks down at a width W,,,, which is at most a factor of 2 larger 
than the minimum width Wmin (cf. the collimated beam experiment of Ref. 

'I2L. Escapa and N.  Garcia, J .  Phys. Condens. Matter 1, 2125 (1989). 
'"E. G. Haanappel and D. van der Marel, Phys. Reu. B 39,5484 (1989); D. van der Marel and E. 

'"G. Kirczenow, Solid State Comm. 68, 715 (1988); J .  Phys. Condens. Matter 1, 305 (1989). 
"'A. Szafer and A. D. Stone, Phys. Rev. Lett. 62, 300 (1989). 
'I6E. Tekman and S. Ciraci, Phys. Rev. B 39, 8772 (1989); Phys. Rev. B 40, 8559 (1989). 
'"Song He and S. Das Sarma, Phys. Reu. B 40, 3379 (1989). 
'18D. van der Marel, in Ref. 15. 
"'N. Garcia and L. Escapa, Appl.  Phys. Lett. 54, 1418 (1989). 
320E. Castafio and G. Kirczenow, Solid State Comm. 70, 801 (1989). 
'llY. Avishai and Y. B. Band, Phys. Reo. B 40, 12535 (1989). 
322A. Kawabata, J .  Phys.  SOC. Japan 58, 372 (1989). 
'"I. B. Levinson, Pis'ma Zh. Eksp. Teor. Fir. 48, 273 (1988) [ J E T P  Lett. 48, 301 (1988)l. 
324A. Matulis and D. Segzda, J .  Phys. Condens. Matter 1, 2289 (1989). 
'"L. I. Glazman, G. B. Lesovick, D. E. Khmel'nitskii, R. I. Shekhter, Pis'ma Zh. Teor. Fiz. 48,218 

326A, Yacoby and Y. Imry, Phys. Reo. B 41, 5341 (1990). 

G. Haanappel, Phys. Reo. B 39, 7811 (1989). 

(1988) [JETP Lett. 48, 238 (1988)l. 
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321, discussed in Section 15). This does not affect the conductance of the 
constriction, however, if the breakdown of adiabaticity results in a mixing of 
the subbands without causing reflection back through the constriction. If 
such is the case, the total transmission pr obabihty through the constriction 
remains the same as in the hypothetical case of fully adiabatic transport. As 
pointed out by Yacoby and a relatively small adiabatic increase in 
width from Wmin to W,,, is sufficient to ensure a drastic suppression of 
reflections at W,,,. The reason is that the subbands with the largest reflection 
probability are close to cutoff; that is, they have subband index close to N,,,, 
the number of subbands occupied at W,,,. Because the transport is adiabatic 
from Wmin to W,,,, only the Nmin subbands with the smallest n arrive at W,,,, 
and these subbands have a small reflection probability. In the language of 
waveguide transmission, one has impedance-matched the constriction to the 
wide 2DEG regions.328 The filtering of subbands by a gradually widening 
constriction has an interesting effect on the angular distribution of the 
electrons injected into the wide 2DEG. This horn collimation effect329 is 
discussed in Section 15. 

An adiabatic constriction improves the accuracy of the conductance 
quantization, but is not required to observe the effect.  calculation^^^^-^^^ 
show that well-defined conductance plateaux persist for abrupt constrictions, 
especially if they are neither very short nor very long. The optimum length for 
the observation of the plateaux is given by313 Lop, z 0.4(WAF)''2. In shorter 
constrictions the plateaux acquire a finite slope, although they do not 
disappear completely even at zero length. For L > Lop, the calculations 
exhibit regular oscillations that depress the conductance periodically below 
its quantized value. The oscillations are damped and have usually vanished 
before the next plateau is reached. As a representative illustration, we 
reproduce in Fig. 46 a set of numerical results for the conductance as a 
function of width (at fixed Fermi wave vector), obtained by Szafer and 
Stone.315 Note that a finite temperature improves the flatness of the plateaux, 
as observed experimentally. The existence of an optimum length can be 
understood as follows. 

Because of the abrupt widening of the constriction, there is a significant 
probability for reflection at the exit of the constriction, in contrast to the 
adiabatic case considered earlier. The conductance as a function of width, or 
Fermi energy, is therefore not a simple step function. On the nth conductance 
plateau backscattering occurs predominantly for the nth subband, since it 
is closest to cutoff. Resonant transmission of this subband occurs if 

327L. W. Molenkamp, A. A. M. Staring, C. W. J. Beenakker, R. Eppenga, C. E. Timmering, J. G. 

328R. Landauer, Z .  Phys. B 68,217 (1987). 
329C. W. J. Beenakker and H. van Houten, Phys. Reu. B 39, 10445 (1989). 

Williamson, C. J. P. M. Harmans, and C. T. Foxon, Phys. Reu. B 41, 1274 (1990). 
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FIG. 46. Transmission resonances exhibited by theoretical results for the conductance of a 
quantum point contact of abrupt (rectangular) shape. A smearing of the resonances occurs at 
nonzero temperatures (To = 0.02 E, /k ,  x 2.8 K). The dashed curve is an exact numerical result; 
the full curves are approximate. Taken from A. Szafer and A. D. Stone, Phys. Reo. Lett. 62, 300 
(1989). 

the constriction length L is approximately an integer multiple of half 
the longitudinal wavelength A, = h[2rn(EF - En)]- ' / ' ,  leading to oscillations 
on the conductance plateaux. These transmission resonances are 
damped, because the reflection probability decreases with decreasing A,. The 
shortest value of 2, on the Nth conductance plateau is 
h[2rn(EN+,  - EN)] -'Iz z (WAF)'/' (for a square-well lateral confining potent- 
ial). The transmission resonances are thus suppressed if L 5 (WAF)'/'. 
Transmission through evanescent modes (i.e., subbands above EF) is pre- 
dominant for the ( N  + 1)th subband, since it has the largest decay length 
A,+,  = h[2rn(EN+, - The observation of that plateau requires 
that the constriction length exceeds this decay length at the population 
threshold of the Nth mode, or L 2 h[2rn(EN+, - The 
optimum length3I3 Lop, z 0.4( thus separates a short constriction 
regime, in which transmission via evanescent modes cannot be ignored, from 
a long constriction regime, in which transmission resonances obscure the 
plateaux. 

Oscillatory structure was resolved in low-temperature experiments on the 
conductance quantization of one quantum point contact by van Wees et 

but was not clearly seen in other devices. A difficulty in the 
interpretation of these and other experiments is that oscillations can also be 
caused by quantum interference processes involving impurity scattering near 
the constriction. Another experimental observation of oscillatory structure 

z 
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FIG. 47. Resistance as a function of gate voltage for an elongated quantum point contact 
( L  = 0.8 pm) at-temperatures of 0.2,0.4, and 0.8 K, showing transmission resonances. Subsequent 
curves from the bottom are offset by 1 kR. Taken from R. J. Brown et al., Solid State Electron. 32, 
1179 (1989). 

was reported by Hirayama et a1.330 for short (100-nm) quantum point 
contacts of fixed width (defined by means of focused ion beam lithography). 
To observe the plateaux, they slowly varied the electron density by weakly 
illuminating the sample. The oscillations were quite reproducible, also after 
thermal cycling of the sample, but again they were found in some of the 
devices only (this was attributed to variations in the abruptness of the 
 constriction^^^^.^^^). Brown et have studied the conductance of split- 
gate constrictions of lengths L % 0.3, 0.8, and 1 pm, and they observed 
pronounced oscillations instead of the flat conductance plateaux found for 
shorter quantum point contacts. The observed oscillatory structure (repro- 
duced in Fig. 47) is quite regular, and it correlates with the sequence of 

330Y. Hirayama, T. Saku, and Y. Horikoshi, Phys. Rev. B 39, 5535 (1989). 
331Y.  Hirayama, T. Saku, and Y. Horikoshi, Jap. J. Appl.  Phys. 28, L701 (1989). 
332R. J. Brown, M. J. Kelly, R. Newbury, M. Pepper, B. Miller, H. Ahmed, D. G. Hasko, D. C. 

Peacock, D. A. Ritchie, J. E. F. Frost, and G. A. C. Jones, Solid State Electron. 32,1179 (1989). 
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plateaux that is recovered at higher temperatures (around 0.8 K). The effect 
was seen in all of the devices studied in Ref. 332. Measurements by Timp et 

on rather similar 0.9-pm-long constrictions did not show periodic 
oscillations, however. Brown et al. conclude that their oscillations are due to 
transmission resonances associated with reflections at entrance and exit of 
the constriction. Detailed comparison with theory is difficult because the 
transmission resonances depend sensitively on the shape of the lateral 
confining potential and on the presence of a potential barrier in the 
constriction (see Section 13.b). A calculation that comes close to the 
observation of Brown et al. has been published by Martin-Moreno and 
Smith.333 

b. Depopulation of Subbands and Suppression of Backscattering by a 
Magnetic Field 

The effect of a magnetic field (perpendicular to the 2DEG) on the 
quantized conductance of a point contact is shown in Fig. 48, as measured by 
van Wees et a/.334 First of all, Fig. 48 demonstrates that the conductance 
quantization is conserved in the presence of a magnetic field and shows a 
smooth transition from zero-field quantization to quantum Hall effect. The 
most noticeable effect of the magnetic field is to reduce the number of 
plateaux in a given gate voltage interval. This provides a demonstration of 
depopulation of magnetoelectric subbands, which is more direct than that 
provided by the experiments discussed in Section 10. In addition, one 
observes that the flatness of the plateaux improves in the presence of the field. 
This is due to the reduction of the reflection probability at the point contact, 
which is revealed most clearly in a somewhat different (four-terminal) 
measurement configuration. These two effects of a magnetic field will be 
discussed separately. We will return to the magnetic suppression of back- 
scattering in Section 18 in connection with the edge channel theory1I2 of the 
quantum Hall effect. 

(1) Depopulation of Subbands. Because the equipartitioning of current 
among the 1D subbands holds regardless of the nature of the subbands 
involved, one can conclude that in the presence of a magnetic field B the 
conductance remains quantized according to G = (2e2/h)N (ignoring spin 
splitting of the subbands, for simplicity). Explicit calculations335 confirm this 
expectation. The number of occupied subbands N as a function of B has been 

333L. Martin-Moreno and C. G. Smith, J .  Phys. Condens. Matter 1, 5421 (1989). 
334B. J. van Wees, L. P. Kouwenhoven, H. van Houten, C. W. J. Beenakker, J. E. Mooij, C. T. 

Foxon, and J. J. Harris, Phys. Rev. B 38, 3625 (1988). 
335M. Buttiker, Phys. Rev. B 41, 7906 (1990); L. I. Glazman and A. V. Khaetskii, J. Phys. 

Condens. Matter 1,5005 (1989); Y .  Avishai and Y. B. Band, Phys. Reu. B 40,3429 (1989); K. B. 
Efetov, J. Phys. Condens. Matter 1, 5535 (1989). 
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FIG. 48. Point contact conductance (corrected for a background resistance) as a function of 

gate voltage for several magnetic field values, illustrating the transition from zero-field 
quantization to quantum Hall effect. The curves have been offset for clarity. The inset shows the 
device geometry. Taken from B. J.  van Wees et al., Phys. Rev. B. 38, 3625 (1988). 

studied in Sections 10 and 12 and is given by Eqs. (10.7) and (10.8) for a 
parabolic and a square-well potential, respectively. In the high-magnetic-field 
regime W k 21,,,,,, the number N z E,/ho, is just the number of occupied 
Landau levels. The conductance quantization is then a manifestation of the 
quantum Hall effect.8 (The fact that G is not a Hall conductance but a two- 
terminal conductance is not an essential distinction for this effect; see Section 
18.) At lower magnetic fields, the conductance quantization provides a direct 
and extremely straightforward method to measure via N = G(2e2/h)-' the 
depopulation of magnetoelectric subbands in the constriction. 

Figure 49 shows N versus B-' for various gate voltages, as it follows from 
the experiment of Fig. 48. Also shown are the theoretical curves for a square- 
well confining potential, with the potential barrier in the constriction taken 
into account by replacing E ,  by E ,  - E ,  in Eq. (10.8). The B-dependence of 
E ,  has been ignored in the calculation. The barrier height E ,  is obtained from 
the high-field conductance plateaux [where N z ( E ,  - E,)/ho,], and the 
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FIG. 49. Number of occupied subbands as a function of reciprocal magnetic field for several 

values of the gate voltage. Data points have been obtained directly from the quantized 
conductance (Fig. 48); solid curves are calculated for a square-well confining potential of width W 
and well bottom E,  as tabulated in the inset. Taken from B. J. van Wees et al., Phys. Rev. B 38, 
3625 (1988). 

constriction width W then follows from the zero-field conductance (where 
N x [2rn(E, - E , ) / h 2 ] 1 / 2  W/TC). The good agreement found over the entire 
field range confirms the expectation that the quantized conductance is 
exclusively determined by the number of occupied subbands, irrespective of 
their electric or magnetic origin. The analysis in Fig. 49 is for a square-well 
confining For the narrowest constrictions a parabolic potential 
should be more appropriate,61 which has been used to analyze the data of 
Fig. 48 in Refs. 336 and 308. Wharam et ~ 1 . ~ ~ ’  have analyzed their 
depopulation data using the intermediate model of a parabolic potential 
with a flattened bottom (cf. also Ref. 336). Because of the uncertainties in the 

336J. F. Weisz and K.-F. Berggren, Phys. Reo. B 40, 1325 (1989). 
337D. A. Wharam, U. Ekenberg, M. Pepper, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. A. Ritchie, 
D. C. Peacock, and G. A. C. Jones, Phys. Rev. B 39, 6283 (1989). 
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actual shape of the potential, the parameter values tabulated in Fig. 49 should 
be considered as rough estimates only. 

In strong magnetic fields the spin degeneracy of the energy levels is 
removed, and additional plateaux at odd multiples of e2/h. 
Wharam et aL7 have demonstrated this effect in a particularly clear fashion, 
using a magnetic field parallel (rather than perpendicular) to the 2DEG. 
Rather strong magnetic fields turned out to be required to fully lift the spin 
degeneracy in this experiment (about 10 T). 

(2) Suppression of Backscattering. Only a small fraction of the electrons 
injected by the current source into the 2DEG is transmitted through the 
point contact. The remaining electrons are scattered back into the source 
contact. This is the origin of the nonzero resistance of a ballistic point 
contact. In this subsection we shall discuss how a relatively weak magnetic 
field leads to a suppression of the geometrical backscattering caused by the 
finite width of the point contact, while the amount of backscattering caused 
by the potential barrier in the point contact remains essentially unaffected. 

The reduction of backscattering by a magnetic field is observed as a 
negative magnetoresistance [i.e., R(B) - R(0) < 01 in a four-terminal measure- 
ment of the longitudinal point contact resistance R,. The voltage probes in 
this experiment”3 are positioned on wide 2DEG regions, well away from the 
constriction (see the inset in Fig. 50). This allows the establishment of local 
equilibrium near the voltage probes, at least in weak magnetic fields (cf. 
Sections 18 and 19), so that the measured four-terminal resistance does not 
depend on the properties of the probes. The experimental results for R ,  in this 
geometry are plotted in Fig. 50. The negative magnetoresistance is 
temperature-independent (between 50mK and 4 K) and is observed in weak 
magnetic fields once the narrow constriction is defined (for V ,  5 -0.3 V). At 
stronger magnetic fields ( B  > 0.4T), a crossover is observed to a positive 
magnetoresistance. The zero-field resistance, the magnitude of the negative 
magnetoresistance, the slope of the positive magnetoresistance, as well as the 
crossover field, all increase with increasing negative gate voltage. 

The magnetic field dependence of the four-terminal resistance shown in 
Fig. 50 is qualitatively different from that of the two-terminal resistance 
R Z t  = G -  considered in the previous subsection. In fact, R Z t  is approximate- 
ly B-independent in weak magnetic fields (below the crossover fields of Fig. 
50). The reason is that RZt  is given by [cf. Eq. (13.1)] 

h 1  
2e2 Nmi, 

RZt = - -, (13.6) 

with Nmin the number of occupied subbands in the constriction (at the point 
where it has its minimum width and electron gas density). In weak magnetic 
fields such that 2lcYc, > W, the number of occupied subbands remains 
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B(T) 
FIG. 50. Four-terminal longitudinal magnetoresistance R ,  of a constriction for a series of gate 

voltages. The negative magnetoresistance is temperature independent between 50mK and 4 K. 
Solid lines are according to Eqs. (13.7) and (10.8), with the constriction width as adjustable 
parameter. The inset shows schematically the device geometry, with the two voltage probes used 
to measure R,. Taken from H. van Houten et al., Phys. Rev. B 37, 8534 (1988). 

approximately constant [cf. Fig. 31 or Eq. (10.8)], so R2,  is only weakly 
dependent on B in this field regime. For stronger fields Eq. (13.6) describes a 
positive magnetoresistance, because Nmin decreases due to the magnetic 
depopulation of subbands discussed earlier. (A similar positive magnetoresis- 
tance is found in a Hall bar with a cross gate; see Ref. 338.) Why then does one 
find a negative magnetoresistance in the four-terminal measurements of Fig. 
50? Qualitatively, the answer is shown in Fig. 51, for a constriction without a 
potential barrier. In a magnetic field the left- and right-moving electrons are 
spatially separated by the Lorentz force at opposite sides of the constriction. 
Quantum mechanically the skipping orbits in Fig. 51 correspond to magnetic 
edge states (cf. Fig. 41). Backscattering thus requires scattering across the 
width of the constriction, which becomes increasingly improbable as lcycl 
becomes smaller and smaller compared with the width (compare Figs. 51a, b). 
For this reason a magnetic field suppresses the geometrical constriction 
resistance in the ballistic regime, but not the resistance associated with the 
constriction in energy space, which is due to the potential barrier. 

These effects were analyzed theoretically in Ref. 113, with the simple result 

h 1  1 
R ,  = - (- - -). 

2e2 N m i n  N w i d e  

(1 3.7) 

338H. Hirai, S. Komiyama, S. Sasa and T. Fujii, Solid State Comm. 72, 1033 (1989). 
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FIG. 51. Illustration of the reduction of backscattering by a magnetic field, which is 
responsible for the negative magnetoresistance of Fig. 50. Shown are trajectories approaching a 
constriction without a potential barrier, in a weak (a) and strong (b) magnetic field. Taken from 
H. van Houten et al., in “Nanostructured Systems” (M. A. Reed, ed.). Academic, New York. 

Here Nwide is the number of occupied Landau levels in the wide 2DEG 
regions. The simplest (but incomplete) argument leading to Eq. (13.7) is that 
the additivity of voltages on reservoirs (ohmic contacts) implies that the two- 
terminal resistance R,, = (h/2e2)N;,!, should equal the sum of the Hall 
resistance R ,  = ( h / 2 e 2 ) N $ , ,  and the longitudinal resistance RL. This argu- 
ment is incomplete because it assumes that the Hall resistance in the wide 
regions is not affected by the presence of the constriction. This is correct in 
general only if inelastic scattering has equilibrated the edge states transmitted 
through the constriction before they reach a voltage probe. Deviations from 
Eq. (13.7) can occur in the absence of local equilibrium near the voltage 
probes, depending on the properties of the probes themselves. We discuss this 
in Section 19, following a derivation of Eq. (13.7) from the Landauer- 
Biittiker formalism.’ l 2  

At small magnetic fields Nmin is approximately constant, while 
Nwide = EF/hw,  decreases linearly with B. Equation (13.7) thus predicts a 
negative magnetoresistance. If the electron density in the wide and narrow 
regions is equal (i.e., the barrier height E, = 0), then the resistance R,  vanishes 
for fields B > Bcrit E 2hkF/eW This follows from Eq. (13.7), because in this 
case Nmin and Nwide are identical. If the electron density in the constriction is 
less than its value in the wide region, then Eq. (13.7) predicts a crossover at 
Bcrit to a strong-field regime of positive magnetoresistance described by 

, if B > B,,,. (1 3.8) 
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The experimental results are well described by the solid curves following 
from Eq. (13.7) (with Nmin given by the square-well result (10.Q and with an 
added constant background resistance). The constriction in the present 
experiment is relatively long ( L  = 3.4pm), and wide (W ranging from 0.2 to 
1.0 pm) so that it does not exhibit quantized two-terminal conductance 
plateaux in the absence of a magnetic field. For this reason the discreteness of 
Nmin was ignored in the theoretical curves in Fig. 50. We emphasize, however, 
that Eq. (13.7) is equally applicable to the quantized case, as observed by 
several g r o ~ p s ~ ~ ~ , ~ ~ ~ + ~ ~ ~  (see Section 19). 

The negative magnetoresistance (13.7) due to the suppression of the 
contact resistance is an additive contribution to the magnetoresistance of a 
long and narrow channel in the quasi-ballistic regime (if the voltage probes 
are positioned on two wide 2DEG regions, connected by the channel). For a 
channel of length L and a mean free path 1 the zero-field contact resistance is a 
fraction - 1/L of the Drude resistance and may thus be ignored for L >> 1. The 
strong-field positive magnetoresistance (1 3.8) resulting from a different 
electron density in the channel may still be important, however. The effect of 
the contact resistance may be suppressed to a large extent by using narrow 
voltage probes attached to the channel itself rather than to wide 2DEG 
regions. As we will see in Section 16, such a solution no longer works in the 
ballistic transport regime, because of the additional scattering inducedz8’ by 
the voltage probes. 

14. COHERENT ELECTRON FOCUSING 

A magnetic field may be used to focus the electrons injected by a point 
contact onto a second point contact. Electron focusing in metals was 
originally conceived by S h a r ~ i n ’ ~ ~  as a method to investigate the shape of the 
Fermi surface. It has become a powerful tool in the study of surface 
scattering,343 and the electron-phonon interaction,344 as reviewed in Refs. 
305, 345, and 346. The experiment is the analogue in the solid state of 
magnetic focusing of electrons in vacuum. Required is a large mean free path 
for the carriers at the Fermi surface, to ensure ballistic motion as in vacuum. 
The mean free path should be much larger than the separation L of the two 

339S. Washburn, A. B. Fowler, H. Schmid, and D. Kern, Phys. Rev. Lett. 61, 2801 (1988). 
340R. J. Haug, A. H. MacDonald, P. Streda, and K. von Klitzing, Phys. Rev. Lett. 61,2797 (1988). 
341R. J. Haug, J. Kucera, P. Streda, and K. von Klitzing, Phys. Rev. B 39, 10892 (1989). 
342B. R. Snell, P. H. Beton, P. C. Main, A. Neves, J. R. Owers-Bradley, L. Eaves, M. Henini, 0. H. 

Hughes, S. P. Beaumont, and C. D. W. Wilkinson, J. Phys. Condens. Matter 1,7499 (1989). 
343V. S. Tsoi, Pis’ma Zh. Eksp. Teor. Fiz.  19, 114 (1974) [JETP Lett. 19, 70 (1974)l; Zh. Eksp. 

Teor. Fiz. 68, 1849 (1975) [Sou. Phys. JETP 41, 927 (1975)l. 
344P. C. van Son, H. van Kempen, and P. Wyder, Phys. Rev. Lett. 58, 1567 (1987). 
3451. K. Yanson, Zh. Eksp. =or. Fiz. 66, 1035 (1974) [Sou. Phys. JETP 39, 506 (1974)l. 
346A. M. Duif, A. G. M. Jansen, and P. Wyder, J. Phys. Condens. Matter 1, 3157 (1989). 
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point contacts. Moreover, L should be much larger than the point contact 
width W, to achieve optimal resolution. In metals, electron focusing is 
essentially a classical phenomenon because the Fermi wavelength 
& - 0.5 nm is much smaller than both W - 1 pm and L - 100pm. The 
ratios &/L  and A,/ W are much larger in a 2DEG than in a metal, typically by 
factors of lo4 and lo2, respectively. Coherent electron f o ~ u s i n g ~ ~ , ~ ~ , ~ ~ ’  is 
possible in a 2DEG because of this relatively large value of the Fermi 
wavelength, and turns out to be strikingly different from classical electron 
focusing in metals. 

Electron focusing can be seen as a transmission experiment in electron 
optics (cf. Ref. 3 for a discussion from this point of view). An alternative point 
of view (emphasized in Refs. 80 and 348) is that coherent electron focusing is a 
prototype of a nonlocal resistance measurement in the quantum ballistic 
transport regime, such as studied extensively in narrow-channel geome- 
tries.310 Longitudinal resistances that are negative (not & B symmetric) and 
dependent on the properties of the current and voltage contacts as well as on 
their separation, periodic and aperiodic magnetoresistance oscillations, 
absence of local equilibrium are all characteristic features of this transport 
regime that appear in a most extreme and bare form in the electron focusing 
geometry. One reason for the simplification offered by this geometry is that 
the current and voltage contacts, being point contacts, are not nearly as 
invasive as the wide leads in a Hall bar geometry. Another reason is that the 
electrons interact with only one boundary (instead of two in a narrow 
channel). 

The outline of this section is as follows. In Section 14.a the experimentd 
results on coherent electron f o c u ~ i n g ~ ~ . ~ ~  are presented. A theoretical 

is given in Section 14.b, in terms of mode interference in the 
waveguide formed by the magnetic field at the 2DEG boundary. Apart from 
the intrinsic interest of electron focusing in a 2DEG, the experiment can also 
be seen as a method to study electron scattering, as in metals. Two such 
 application^'^^.^^^ are discussed in Section 14.c. We restrict ourselves in this 
section to focusing by a magnetic field. Electrostatic focusing350 is discussed 
in Section 15.b. 

a. Experiments 

The geometry of the experiment59 in a 2DEG is the transverse focusing 

347C. W. J. Beenakker, H. van Houten, and B. J. van Wees, Europhys. Lett. 7, 359 (1988). 
348C. W. J. Beenakker, H. van Houten, and B. J. van Wees, Festkiirperprobleme 29,299 (1989). 
349J. Spector, H. L. Stormer, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Surf. Sci. 228, 283 

( 1  990). 
350U. Sivan, M. Heiblum, and C. P. Umbach, and H. Shtrikman, Phys. Rev. B 41,7937 (1990); J. 

Spector, H. L. Stormer, K. W. Baldwin, L. N .  Pfeiffer and K. W. West, Appl. Phys.  Lett. 56, 
1290 (1990). 
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FIG. 52. Illustration of classical electron focusing by a magnetic field. Top: Skipping orbits 
along the 2DEG boundary. The trajectories are drawn up to the third specular reflection. 
Bottom: Plot of the caustics, which are the collection of focal points of the trajectories. Taken 
from H. van Houten et al., Phys. Rev. B 39, 8556 (1989). 

geometry of Tsoi343 and consists of two point contacts on the same boundary 
in a perpendicular magnetic field. (In metals one can also use the geometry of 
S h a r ~ i n ~ ~ ~  with opposite point contacts in a longitudinal field. This is not 
possible in two dimensions.) Two point contacts and the intermediate 2DEG 
boundary are created electrostatically by means of the two split gates shown 
in Fig. 5b. Figure 52 illustrates electron focusing in two dimensions as it 
follows from the classical mechanics of electrons at the Fermi level. The 
injector (i) injects a divergent beam of electrons ballistically into the 2DEG. 
Electrons are detected if they reach the adjacent collector (c), after one or 
more specular reflections at the boundary connecting i and c. (These are the 
skipping orbits discussed in Section 12.a.) The focusing action of the magnetic 
field is evident in Fig. 52 (top) from the black lines of high density of 
trajectories. These lines are known in optics as caustics and they are plotted 
separately in Fig. 52 (bottom). The caustics intersect the 2DEG boundary at 
multiples of the cyclotron diameter from the injector. As the magnetic field is 
increased, a series of these focal points shifts past the collector. The electron 
flux incident on the collector thus reaches a maximum whenever its 
separation L from the injector is an integer multiple of 2ZcYcl = 2hk,/eB. This 
occurs when B = pBfocus, p = 1,2,. . . , with 

Bfocus = 2hk,/eL. (14.1) 

For a given injected current Ii the voltage V ,  on the collector is proportional 
to the incident flux. The classical picture thus predicts a series of equidistant 
peaks in the collector voltage as a function of magnetic field. 
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FIG. 53. Bottom: Experimental electron focusing spectrum (T= 50mK, L= 3.0pm) in the 
generalized Hall resistance configuration depicted in the inset. The two traces a and b are 
measured with interchanged current and voltage leads, and demonstrate the injector-collector 
reciprocity as well as the reproducibility of the fine structure. Top: Calculated classical focusing 
spectrum corresponding to the experimental trace a (50-nm-wide point contacts were assumed). 
The dashed line is the extrapolation of the classical Hall resistance seen in reverse fields. Taken 
from H. van Houten et al., Phys. Rev. B 39, 8556 (1989). 

In Fig. 53 (top) we show such a classical focusing spectrum, calculated for 
parameters corresponding to the experiment discussed later ( L  = 3.0 pm, 
k,  = 1.5 x lo8 m-'). The spectrum consists of equidistant focusing peaks of 
approximately equal magnitude superimposed on the Hall resistance (dashed 
line). The pth peak is due to electrons injected perpendicularly to the 
boundary that have made p - 1 specular reflections between injector and 
collector. Such a classical focusing spectrum is commonly observed in 

albeit with a decreasing height of subsequent peaks because of 
partially diffuse scattering at the metal surface. Note that the peaks occur in 
one field direction only. In reverse fields the focal points are at the wrong side 
of the injector for detection, and the normal Hall resistance is obtained. The 
experimental result for a 2DEG is shown in the bottom half of Fig. 53 (trace a; 
trace b is discussed later). A series of five focusing peaks is evident at the 
expected positions. The observation of multiple focusing peaks immediately 

35'P. A. M. Benistant, Ph.D. thesis, University of Nijmegen, The Netherlands, 1984; P. A. M. 

''*P. A. M. Benistant, G. F. A. van de Walle, H. van Kempen, and P. Wyder, Phys. Reo. B 33,690 
Benistant, A. P. van Gelder, H. van Kempen, and P. Wyder, Phys. Reo. B 32, 3351 (1985). 

( 1986). 
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implies that the electrostatically defined 2DEG boundary scatters predomi- 
nantly specularly. (This finding59 is supported by the magnetoresistance 
experiments of Thornton et ~ 1 , ~ ~ '  in a narrow split-gate channel; cf. Section 
5.) Figure 53 is obtained in a measuring configuration (inset) in which an 
imaginary line connecting the voltage probes crosses that between the current 
source and drain. This is the configuration for a generalized Hall resistance 
measurement. If the crossing is avoided, one measures a longitudinal 
resistance, which shows the focusing peaks without a superimposed Hall 
slope. This longitudinal resistance periodically becomes negative. This is a 
classical result" of magnetic defocusing, which causes the probability density 
near the point contact voltage probe to be reduced with respect to the 
spatially averaged probability density that determines the voltage on the 
wide voltage probe (cf. the regions of reduced density between lines of focus in 
Fig. 52). 

On the experimental focusing peaks a fine structure is resolved at low 
temperatures (below 1K). The fine structure is well reproducible but 
sample-dependent. A nice demonstration of the reproducibility of the fine 
structure is obtained upon interchanging current and voltage leads, so that 
the injector becomes the collector, and vice versa. The resulting focusing 
spectrum shown in Fig. 53 (trace b) is almost the precise mirror image of the 
original one (trace a), although this particular device had a strong asymmetry 
in the widths of injector and collector. The symmetry in the focusing spectra 
is an example of the general reciprocity relation (12.16). If one applies the 
Buttiker equations (12.12) to the electron focusing geometry (as is done in 
Section 19), one finds that the ratio of collector voltage V ,  to injector current 
Ii is given by 

(14.2) 

where l !+c  is the transmission probability from injector to collector, and Gi 
and G, are the conductances of the injector and collector point contact. Since 
T+c(B) = K+i(  - B) and G(B) = G( -B), this expression for the focusing 
spectrum is manifestly symmetric under interchange of injector and collector 
with reversal of the magnetic field. 

The fine structure on the focusing peaks in Fig. 53 is the first indication 
that electron focusing in a 2DEG is qualitatively different from the corre- 
sponding experiment in metals. At higher magnetic fields the resemblance to 
the classical focusing spectrum is lost; see Fig. 54. A Fourier transform of the 
spectrum for B 2 0.8 T (inset in Fig. 54) shows that the large-amplitude high- 
field oscillations have a dominant periodicity of 0.1 T, which is approximately 
the same as the periodicity Bfocus of the much smaller focusing peaks at low 
magnetic fields (Bfocus in Fig. 54 differs from Fig. 53 because of a smaller 
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FIG. 54. Experimental electron focusing spectrum over a larger field range and for very 
narrow point contacts (estimated width 20-40nm; T= 50mK, L= 1.5pm). The inset gives the 
Fourier transform for B 2 0.8 7: The high-field oscillations have the same dominant periodicity 
as the low-field focusing peaks, but with a much larger amplitude. Taken from H. van Houten et 
al., Phys. Rev. B 39, 8556 (1989). 

L = 1.5 pm). This dominant periodicity can be explained in terms of quantum 
interference between the different skipping orbits from injector to collector or 
in terms of interference of coherently excited edge channels, as we discuss in 
the following subsection. The experimental implication is that the injector 
acts as a coherent point source with the coherence maintained over a distance 
of several microns to the collector. 

b. Theory 

To explain the characteristic features of the coherent electron focusing 
experiments we have described, we must go beyond the classical de- 
s~r ip t ion .* ' ,~~ '  As discussed in Section 12, quantum ballistic transport along 
the 2DEG boundary in a magnetic field takes place via magnetic edge states, 
which form the propagating modes at the Fermi level. Since the injector has a 
width below A,, it excites these modes coherently. For k,L >> 1 the inter- 
ference of modes at the collector is dominated by their rapidly varying phase 
factors exp(ik, L). The wave number k, corresponds classically to the 
separation of the center of the cyclotron orbit from the 2DEG boundary [Eq. 
(12.5)]. In the Landau gauge A = (0, Bx, 0) (with the axis chosen as in Fig. 52) 
one has k, = kFsina,, where a is the angle with the x-axis under which the 
cyclotron orbit is reflected from the boundary. The quantized values a, follow 
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FIG. 55. Phase k,L of the edge channels at  the collector, calculated from Eq. (14.3). Note the 
domain of approximately linear n-dependence of the phase, responsible for the oscillations with 
B,,,,,-periodicity. Taken from H. van Houten et al., Phys. Rev. B 39, 8556 (1989). 

in this semiclassical description from the Bohr-Sommerfeld quantization 
rule (12.6) that the flux enclosed by the cyclotron orbit and the boundary 
equals (n - a)h/e [the phase shift y in Eq. (12.6) equals n/2 for an edge state at 
an infinite barrier potential]. Simple geometry shows that this requires that 

2n (n -a), n 1 .  
- - c1, - ~ sin 2a,, = ~ n = 1, 2, ..., N .  (14.3) 
2 2 kF lcycl 

As plotted in Fig. 55, the dependence on n of the phase k,L is close to 
linear in a broad interval. This also follows from expansion of Eq. (14.3) 
around c1, = 0, which gives 

B 
k,L =constant - 2nn ~ 

Bfocus 

If B/Bfocus is an integer, a fraction of order (l/kFL)1/3 of the N edge states 
interfere constructively at the collector. Because of the 1/3 power, this is a 
substantial fraction even for the large k,L - lo2 of the experiment. The 
resulting mode interference oscillations with B,o,u,-periodicity can become 
much larger than the classical focusing peaks. This has been shown in Refs. 
347 and 80, where the transmission probability T+c  was calculated in the 
WKB approximation with neglect of the finite width of the injector and 
detector. From Eq. (14.2) the focusing spectrum is then obtained in the form 

(14.5) 
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FIG. 56. Focusing spectrum calculated from Eq. (14.5), for parameters corresponding to the 
experimental Fig. 54. The inset shows the Fourier transform for B > 0.8 T Infinitesimally small 
point contact widths are assumed in the calculation. Taken from C. W. J. Beenakker et al., 
Festkorperprobleme 29, 299 (1989). 

which is plotted in Fig. 56 for parameter values corresponding to the 
experimental Fig. 54. The inset shows the Fourier transform for B 3 0.8T. 

There is no detailed one-to-one correspondence between the experimental 
and theoretical spectra. No such correspondence was to be expected in view 
of the sensitivity of the experimental spectrum to small variations in the 
voltage on the gate defining the point contacts and the 2DEG boundary. 
Those features of the experimental spectrum that are insensitive to the precise 
measurement conditions are, however, well reproduced by the calculation: 
We recognize in Fig. 56 the low-field focusing peaks and the large-amplitude 
high-field oscillations with the same B,,,,,-periodicity. The high-field oscilla- 
tions range from about 0 to lOkR in both theory and experiment. The 
maximum amplitude is not far below the theoretical upper bound of 
h/2ez = 13 kR, which follows from Eq. (14.5) if we assume that all the modes 
interfere constructively. This indicates that a maximal phase coherence is 
realized in the experiment and implies that the experimental injector and 
collector point contacts resemble the idealized point source/detector in the 
calculation. 

c. Scattering and Electron Focusing 

Scattering events other than specular boundary scattering can be largely 
ignored for the relatively small point contact separations L < 3pm in the 
experiments discussed (any other inelastic or elastic scattering 
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FIG. 57. Experimental electron focusing spectra (in the generalized longitudinal resistance 
configuration) at 0.3 K for five different injector-collector separations in a very high mobility 
material. The vertical scale varies among the curves. Taken from J. Spector et al., Sur j  Sci. 228, 
283 (1990). 

events would have been detected as a reduction of the oscillations with Bf,,,,- 
periodicity below the theoretical estimate). Spector et ~ 1 . ~ ~ ~  have repeated the 
experiments for larger L to study scattering processes in an ultrahigh 
mobility3539354 2DEG ( p e  = 5.5 x lo6 cm2/V.s). They used relatively wide 
point contacts (about lpm)  so that electron focusing was in the classical 
regime. In Fig. 57 we reproduce their experimental results for point contact 
separations up to 64pm. The peaks in the focusing spectrum for a given L 
have a roughly constant amplitude, indicating that scattering at  the bound- 
ary is mostly specular rather than diffusive-in agreement with the experi- 
ments of Ref. 59. Spector et ~ 1 . ~ ~ ~  find that the amplitude of the focusing 
peaks decreases exponentially with increasing L, due to scattering in the 
electron gas (see Fig. 58). The decay exp( - L/L,) with Lo z 10 pm implies an 
effective mean free path (measured along the arc of the skipping orbits) of 
L071/2 z 15 pm. This is smaller than the transport mean free path derived 
from the conductivity by about a factor of 2, which may point to a greater 
sensitivity of electron focusing to forward scattering. 

Electron focusing by a magnetic field may also play a role in geometries 
other than the double-point contact geometry of Fig. 52. One example is 
mentioned in the context of junction scattering in a cross geometry in Section 
16. Another example is the experiment by Nakamura et ul.loS on the 
magnetoresistance of equally spaced narrow channels in parallel (see Fig. 59). 

353L. Pfeiffer, K. W. West, H. L. Stormer, and K. W. Baldwin, Appl. Phys. Lett. 55, 1888 (1989). 
354C. T. Foxon, J. J. Harris, D. Hilton, J. Hewett, and C. Roberts, Semicond. Sci. Technol. 4, 582 

(1989); C. T. Foxon and J. J. Harris, Philips J .  Rex 41, 313 (1986). 
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FIG. 58. Exponential decay of the oscillation amplitude of the collector voltage (normalized 
by the injector voltage) as a function of injector-collector separation d (denoted by Lin the text). 
Taken from J. Spector et a!., Surf. Sci. 228, 283 (1990). 

Resistance peaks occur in this experiment when electrons that are trans- 
mitted through one of the channels are focused back through another 
channel. The resistance peaks occur at B = (n/rn)B,,,,,, where Bfocus is given 
by Eq. (14.1) with L the spacing of adjacent channels. The identification of the 
various peaks in Fig. 59 is given in the inset. Nakamura et al.108 conclude 
from the rapidly diminishing height of consecutive focusing peaks (which 
require an increasing number of specular reflections) that there is a large 
probability of diffuse boundary scattering. The reason for the difference with 
the experiments discussed previously is that the boundary in the experiment 
of Fig. 59 is defined by focused ion beam lithography, rather than electrostat- 
ically by means of a gate. As discussed in Section 5, the former technique may 
introduce a considerable boundary roughness. 

Electron focusing has been used by Williamson et ~ 1 . ~ ~ ~  to study scattering 
processes for “hot” electrons, with an energy in excess of the Fermi energy, 
and for “cool” holes, or empty states in the conduction band below the Fermi 
level (see Ref. 307 for a review). An interesting aspect of hot-electron focusing 
is that it allows a measurement of the local electrostatic potential drop across 
a current-carrying quantum point contact,jS5 something ‘ihat is not possible 
using conventional resistance measurements, where the sum of electrostatic 

355J. G. Williamson, H. van Houten, C. W. J. Beenakker, M. E. I. Broekaart, L. I. A. Spendeler, B. 
J. van Wees, and C. T. Foxon, Phys. Reo. B 41, 1207 (1990); Surf. Sci. 229, 303 (1990). 
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FIG. 59. Magnetoresistance of N constrictions in parallel at 1.3 K. The arrows indicate the 
oscillations due to electron focusing, according to the mechanisms illustrated in the inset. The 
resistance scale is indicated by 10R bars. Taken from K. Nakamura et al., Appl.  Phys. Lett. 56, 
385 (1990). 

and chemical potentials is measured. The importance of such alternative 
techniques to study electrical conduction has been stressed by L a n d a ~ e r . ~ ~ ~  

15. COLLIMATION 

The subject of this section is the collimation of electrons injected by a 
point contact329 and its effect on transport measurements in geometries 

356R. Landauer, in “Analogies in Optics and Microelectronics” (W. van Haeringen and D. 
Lenstra, eds.). Kluwer Academic, Dordrecht, 1990. 
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involving two opposite point Collimation (i.e., the narrowing 
of the angular injection distributions) follows from the constraints on the 
electron momentum imposed by the potential barrier in the point contact 
(barrier collirnation), and by the gradual widening of the point contact at its 
entrance and exit (horn collimation). We summarize the theory in Section 15.a. 
The effect was originally proposed329 to explain the remarkable observation 
of Wharam et ~ 1 . ~ ’ ~  that the series resistance of two opposite point contacts is 
considerably less than the sum of the two individual resistances (Section 15.c). 
A direct experimental proof of collimation was provided by Molenkamp et 
al.,327 who measured the deflection of the injected beam of electrons in a 
magnetic field (Section 15.b). A related experiment by Sivan et a1.,350 aimed at 
the demonstration of the focusing action of an electrostatic lens, is also 
discussed in this subsection. The collimation effect has an importance in 
ballistic transport that goes beyond the point contact geometry. It will be 
shown in Section 16 that the phenomenon is at the origin of a variety of 
magnetoresistance anomalies in narrow multiprobe c o n d ~ c t o r s . ~ ~ ~ ~ ~ ~ ~  

a. Theory 

Since collimation follows from classical mechanics, a semiclassical theory 
is sufficient to describe the essential phenomena, as we now discuss (following 
Refs. 329 and 3 11). Semiclassically, collimation results from the adiabatic 
invariance of the product of channel width W and absolute value of the 
transverse momentum hk, (this product is proportional to the action for 
motion transverse to the channel).361 Therefore, if the electrostatic potential 
in the point contact region is sufficiently smooth, the quantity S = Jk,JW is 
approximately constant from point contact entrance to exit. Note that S/n 
corresponds to the quantum mechanical ID subband index n. The quantum 
mechanical criterion for adiabatic transport was derived by Yacoby and 
Imry326 (see Section 13). As was discussed there, adiabatic transport breaks 
down at the exit of the point contact, where it widens abruptly into a 2DEG 
of essentially infinite width. Collimation reduces the injectionlacceptunce cone 
of the point contact from its original value of n to a value of ~cI,,,. This effect 
is illustrated in Fig. 60. Electrons incident at an angle (a1 > from normal 
incidence are reflected. (The geometry of Fig. 60b is known in optics as a 
conicnl Vice versa, all electrons leave the constriction at  an angle 

357D. A. Wharam, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. 

358H. U. Baranger and A. D. Stone, Phys. Rev. Let t  63,414 (1989); also in Ref. 16. 
”’C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett. 63, 1857 (1989). 
360C. W. J. Beenakker and H. van Houten, in Ref. 17. 
361L. D. Landau and E. M. Lifshitz, “Mechanics.” Pergamon, Oxford, 1976. 
362N. S. Kapany, in “Concepts of Classical Optics” (J. Strong, ed.). Freeman, San Francisco, 

Ritchie, and G. A. C. Jones, J .  Phys. C 21, L887 (1988). 

1958. 
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FIG. 60. Illustration of the collimation effect for an abrupt constriction (a) containing a 
potential barrier of height E ,  and for a horn-shaped constriction (b) that is flared from a width 
W,,, to W,,,. The dash-dotted trajectories approaching at an angle a outside the injection- 
acceptance cone are reflected. Taken from H. van Houten and C. W. J.  Beenakker, in 
“Nanostructure Physics and Fabrication” (M. Reed and W. P. Kirk, eds.). Academic, New York, 
1989. 

la\ < amax (i.e., the injected electrons form a collimated beam of angular 
opening 2amax). 

To obtain an analytic expression for the collimation effect, we describe the 
shape of the potential in the point contact region by three parameters: Wmin, 
W,,,, and E ,  (see Fig. 60). We consider the case that the point contact has its 
minimal width Wmin at the point where the barrier has its maximal height E ,  
above the bottom of the conduction band in the broad regions. At that point 
the largest possible value of S is 

S, = ( 2 ~ z / h ~ ) ” ~ ( E ~  - E,)”’ Wmin. 

We assume that adiabatic transport (i.e., S = constant) holds up to a point of 
zero barrier height and maximal width Wmax. The abrupt separation of 
adiabatic and nonadiabatic regions is a simplification that can be, and has 
been, tested by numerical calculations (see below). At the point contact exit, 
the largest possible value of S is 

S 2  = (2m/fi2)1/2(EF)1/2 sin amaxWmax. 

The invariance of S implies that S, = S,; hence, 

EF 1/2  W 
(15.1) a,,, = arcsin (+); f = (-) ~. max 

E F  - Ec Wmin 

The collimation factor f 3 1 is the product of a term describing the 
collimating effect of a barrier of height E ,  (barrier collimation) and a term 
describing collimation due to a gradual widening of the point contact width 
from Wmin to W,,, (horn collimation). In the adiabatic approximation, the 
angular injection distribution P(a) is proportional to cos a with an abrupt 
truncation at & amax. The cosine angular dependence follows from the cosine 
distribution of the incident flux in combination with time-reversal symmetry 
and is thus not affected by the reduction of the injection-acceptance cone. 
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We therefore conclude that in the adiabatic approximation P(a) (normalized 
to unity) is given by 

P(a) = ff cos a, if (a( < arcsin( l/f), 

= 0, otherwise. (1 5.2) 

We defer to Section 15.b a comparison of the analytical result (15.2) with a 
numerical calculation. 

Barrier collimation does not require adiabaticity. For an abrupt barrier, 
collimation simply results from transverse momentum conservation, as in 
Fig. 60a, leading directly to Eq. (15.2). (The total external reflection at  an 
abrupt barrier for trajectories outside the collimation cone is similar to the 
optical effect of total internal reflection at a boundary separating a region of 
high refractive index from a region of small refractive index; see the end of 
Section 15.b.) A related collimation effect resulting from transverse mom- 
entum conservation occurs if electrons tunnel through a potential barrier. 
Since the tunneling probability through a high potential barrier is only 
weakly dependent on energy, it follows that the strongest collimation is to be 
expected if the barrier height equals the Fermi energy. On lowering the 
barrier below E ,  ballistic transport over the barrier dominates, and the 
collimation cone widens according to Eq. (1 5.2). A quantum mechanical 
calculation of barrier collimation may be found in Ref. 363. 

The injection distribution (15.2) can be used to obtain (in the semiclassical 
limit) the direct transmission probability Td between two opposite identical 
point contacts separated by a large distance L. To this end, first note that 
7 J N  is the fraction of the injected current that reaches the opposite point 
contact (since the transmission probability through the first point contact is 
N ,  for N occupied subbands in the point contact). Electrons injected within a 
cone of opening angle Wma,/L centered at a = 0 reach the opposite point 
contact and are transmitted. If this opening angle is much smaller than the 
total opening angle 2ama, of the beam, then the distribution function P(a) can 
be approximated by P(0) within this cone. This approximation requires 
W,,,/L << l/f, which is satisfied experimentally in devices with a sufficiently 
large point contact separation. We thus obtain 7 J N  = P(0)Wma,/L, which, 
using Eq. (15.2), can be written as329 

r, = f ( W m a x / 2 W .  (1 5.3) 

This simple analytical formula can be used to describe the experiments on 
transport through identical opposite point contacts in terms of one empirical 
parameter f ,  as discussed in the following subsections. 

363H. de Raedt, N.  Garcia, and J. J. Saenz, Phys. Rev. Lett. 63,2260 (1989); N. Garcia, J. J. Saenz, 
and H. de Raedt, J .  Phys. Condens. Matter 1, 9931 (1989). 
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FIG. 61. Detection of a collimated electron beam over a distance of 4 pm. In this four-terminal 
measurement, two ohmic contacts to the 2DEG region between the point contacts are used: One 
of these acts as a drain for the current Ii through the injector, and the other is used as a zero- 
reference for the voltage V,  on the collector. The drawn curve is the experimental data at 
T = 1.8 K. The black dots are the result of a semiclassical simulation, using a hard-wall potential 
with contours as shown in the inset. The dashed curve results from a simulation without 
collimation (corresponding to rectangular corners in the potential contour). Taken from L. W. 
Molenkarnp et a[., Phys. Rev. B 41, 1274 (1990). 

b. Magnetic Deflection of a Collimated Electron Beam 

A to sensitively detect the collimated electron beam 
injected by a point contact is to sweep the beam past a second opposite point 
contact by means of a magnetic field. The geometry is shown in Fig. 61 (inset). 
The current li through the injecting point contact is drained to ground at one 
or two (the difference is not essential) ends of the 2DEG channel separating 
the point contacts. The opposite point contact, the collector, serves as a 
voltage probe (with the voltage V ,  being measured relative to ground). In the 
case that both ends of the 2DEG channel are grounded, the collector voltage 
divided by the injected current is given by 

(1 5.4) 

with G = (2e2/h)N the two-terminal conductance of the individual point 
contact (both point contacts are assumed to be identical) and Td the direct 
transmission probability between the two point contacts calculated in 
Section 15.4. Equation (15.4) can be obtained from the Landauer-Buttiker 
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formalism (as done in Ref. 311) or simply by noting that the current I i T , / N  
incident on the collector has to be counterbalanced by an equal outgoing 
current G K .  In the absence of a magnetic field, we obtain [using Equation 
(1 5.3) for the direct transmission probability] 

K h  n __ 
Ii - 2e2 ” 2kFL ’ 

(15.5) 

where k, is the Fermi wave vector in the region between the point contacts. In 
an experimental situation L and k ,  are known, so the collimation factor f can 
be directly determined from the collector voltage by means of Eq. (15.5). 

The result (1 5.5) holds in the absence of a magnetic field. A small magnetic 
field B will deflect the collimated electron beam past the collector. Simple 
geometry leads to the criterion L/2lcycI = urn,, for the cyclotron radius at 
which Td is reduced to zero by the Lorentz force (assuming that L >> Wrnax). 
One would thus expect to see in K/Zi a peak around zero field, of height given 
by Eq. (15.5) and of width 

AB = (4hk,/eL)arcsin(l/f), (1 5.6) 

according to Eq. (15,l). 
In Fig. 61 this collimation peak is shown (solid curve), as measured by 

Molenkamp et ~ 1 . ~ ’ ~  at T = 1.2 K in a device with a L = 4.0-pm separation 
between injector and collector. In this measurement only one end of the 
region between the point contacts was grounded-a measurement con- 
figuration referred to in narrow Hall bar geometries as a bend resistance 
m e a s ~ r e m e n t ’ ~ ~ . ~ ~ ~  (cf. Section 16). One can show, using the Landauer- 
Buttiker formalism,’ that the height of the collimation peak is still given by 
Eq. (15.5) if one replaces3”f2 by f’ - 3. The expression (15.6) for the width 
is not modified. The experimental result in Fig. 61 shows a peak height of 
z 150 0 (measured relative to the background resistance at large magnetic 
fields). Using L = 4.0 pm and the value k ,  = 1.1 x lo8 m-’ obtained from 
Hall resistance measurements in the channel between the point contacts, one 
deduces a collimation factorf z 1.85. The corresponding opening angle of the 
injection/acceptance cone is 2urn,, z 6.5”. The calculated value off would 
imply a width AB z 0.04 T, which is not far from the measured full width at 
half maximum of 0.03 T. 

The experimental data in Fig. 61 are compared with the result3” from a 
numerical simulation of classical trajectories of the electrons at the Fermi 
level (following the method of Ref. 329). This semiclassical calculation was 
performed in order to relax the assumption of adiabatic transport in the point 

364Y. Takagaki, K. Gamo, S. Namba, S. Ishida, S. Takaoka, K. Murase, K. Ishibashi, and Y. 
Aoyagi, Solid State Comm. 68, 1051 (1988); 71, 809 (1989). 
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FIG. 62. Calculated angular injection distri- 
butions in zero magnetic field. The solid hist- 
ogram is the result of a simulation of the 
classical trajectories at the Fermi energy in the 
geometry shown in the inset of Fig. 61. The 
dotted curve follows from the adiabatic 
approximation (15.2), with the experimental 
collimation factor f = 1.85. The dashed curve 
is the cosine distribution in the absence of any 
collimation. Taken from L. W. Molenkamp et 
al., Phys. Rev. B. 41, 1274 (1990). 

contact region, and of small GIN, on which Eqs. (15.3) and (15.5) are based. 
The dashed curve is for point contacts defined by hardwall contours with 
straight corners (no collimation); the dots are for the smooth hardwall 
contours shown in the inset, which lead to collimation via the horn effect (cf. 
Fig. 60b; the barrier collimation of Fig. 60a is presumably unimportant at the 
small gate voltage used in the experiment and is not taken into account in the 
numerical simulation). The angular injection distributions P(a) that follow 
from these numerical simulations are compared in Fig. 62 (solid histogram) 
with the result (15.2) from the adiabatic approximation fo r f=  1.85 (dotted 
curve). The uncollimated distribution P(a) = (cos ct)/2 is also shown for 
comparison (dashed curve). Taken together, Figs. 61 and 62 unequivocally 
demonstrate the importance of collimation for the transport properties, as 
well as the adequateness of the adiabatic approximation as an estimator of 
the collimation cone. 

Once the point contact width becomes less than a wavelength, diffraction 
inhibits collimation of the electron beam. In the limit k, W << 1, the injection 
distribution becomes proportional to cos2 ct for all ct, independent of the 
shape of the potential in the point contact r e g i ~ n . ~ ' . ~ ' ~  The coherent electron 
focusing  experiment^^^.^' discussed in Sections 14.a and 14.b were performed 
in this limit. 

We conclude this subsection by briefly discussing an alternative way to 
increase the transmission probability between two opposite point contacts, 
which isfocusing of the injected electron beam onto the collector. Magnetic 
focusing, discussed in Section 14 for adjacent point contacts, cannot be used 
for opposite point contacts in two dimensions (unlike in three dimensions, 
where a magnetic field along the line connecting the point contacts will focus 
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FIG 63. Electrostatic focusing onto a collector (c2) of an injected 
electron beam (at i) by means of a concave lens corresponding to a 
region of reduced electron density. Focusing in such an arrange- 
ment was detected e ~ p e r i m e n t a l l y . ~ ~ ~  

the beam296). A succesful demonstration of electrostatic focusing was recently 
reported by Sivan et al. and by Spector et aZ.350 The focusing is achieved by 
means of a potential barrier of a concave shape, created as a region of reduced 
density in the 2DEG by means of a gate between the injector and the collector 
(see Fig. 63). A focusing lens for electrons is concave because electrons 
approaching a potential barrier are deflected in a direction perpendicular to 
the normal. This is an amusing difference with light, which is deflected toward 
the normal on entering a more dense medium, so an optical focusing lens is 
convex. The different dispersion laws are the origin of this different behavior 
of light and electrons.350 

c. Series Resistance 

The first experimental study of ballistic transport through two opposite 
point contacts was carried out by Wharam et a1.,357 who discovered that the 
series resistance is considerably less than the sum of the two individual 
resistances. Sugsequent experiments confirmed this r e s ~ l t . ~ ~ ~ , ~ ~ ~  The 
theoretical explanation329 of this observation is that collimation of the 
electrons injected by a point contact enhances the direct transmission 
probability through the opposite point contact, thereby significantly reduc- 
ing the series resistance below its ohmic value. We will discuss the transport 
and magnetotransport in this geometry. We will not consider the alternative 
geometry of two adjacent point contacts in parallel (studied in Refs. 367- 
369). In that geometry the collimation effect cannot enhance the coupling of 
the two point contacts, so only small deviations from Ohm's law are to be 
expected. 

365Y. Hirayama and T. Saku, Solid State Comm. 73, 113 (1990); Phys. Rev. B 41, 2927 (1990). 
366P. H. Beton, B. R. Snell, P. C. Main, A. Neves, J. R. Owers-Bradley, L. Eaves, M. Henini, 0. H. 

Hughes, S. P. Beaumont, and C. D. W. Wilkinson, J. Phys. Condens. Matter 1, 7505 (1989). 
367E. Castafio and G. Kirczenow, Phys. Rev. B. 41, 5055 (1990). Y. Avishai, M. Kaveh, S. Shatz, 

and Y. B. Band, J. Phys. Condens. Matter 1, 6907 (1989). 
368C. G. Smith, M. Pepper, R. Newbury, H. Ahmed, D. G. Hasko, D. C. Peacock, J. E. F. Frost, 

D. A. Ritchie, G. A. C. Jones, and G. Hill, J. Phys. Condens. Matter 1, 6763 (1989). 
369Y. Hirayama and T. Saku, Jpn. J. Appl.  Phys.  (to be published). 
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FIG. 64. Magnetic field dependence of the series conductance of two opposite point contacts 
(measured as shown in the inset; the point contact separation is L =  1.0pn) for three different 
values of the gate voltage (solid curves) at T =  100mK. For clarity, subsequent curves from 
bottom to top are offset by 0.5 x 10-4Q-1, with the lowest curve shown at its actual value. The 
dotted curves are calculated from Eqs. (15.10) and (10.8), with the point contact width as 
adjustable parameter. Taken from A. A. M. Staring et al., Phys. Reu. B. 41, 8461 (1990). 

The expression for the two-terminal series resistance of two identical 
opposite point contacts in terms of the direct transmission probability can be 
obtained from the Landauer-Buttiker f~rmalisrn,~ as was done in Ref. 329. 
We give here an equivalent, somewhat more intuitive derivation. Consider 
the geometry shown in Fig. 64 (inset). A fraction T,/N of the current G V  
injected through the first point contact by the current source is directly 
transmitted through the second point contact (and then drained to ground). 
Here G = (2e2/h)N is the conductance of the individual point contact, and V 
is the source-drain voltage. The remaining fraction 1 - T,/N equilibrates in 
the region between the point contacts, as a result of inelastic scattering (elastic 
scattering is sufficient if phase coherence does not play a role). Since that 
region cannot drain charge (the attached contacts are not connected to 
ground), these electrons will eventually leave via one of the two point 
contacts. For a symmetric structure we may assume that the fraction 
$1 - T,/N) of the injected current G V  is transmitted through the second 
point contact after equilibration. The total source-drain current I is the sum 
of the direct and indirect contributions: 

I = &l + T,/N)GV (15.7) 

The series conductance Gseries = 1/V becomes 

Gseries = M 1  + T,/W (15.8) 
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In the absence of direct transmission (& = 0), one recovers the ohmic 
addition law for the resistance, as expected for the case of complete 
intervening equilibration (cf. the related analysis by Biittiker of tunneling in 
series  barrier^^^'^^^^). At the opposite extreme, if all transmission is 
direct(T, = N), the series conductance is identical to that of the single point 
contact. Substituting (15.3) into Eq. (15.8), we obtain the result329 for small 
but nonzero direct transmission: 

Gseries = +f(WmaxI2L)). ( 1  5.9) 

The quantized plateaus in the series resistance, observed experiment- 
ally,357 are of course not obtained in the semiclassical calculation leading to 
Eq. (15.9). However, since the nonadditivity is essentially a semiclassical 
collimation effect, the present analysis should give a reasonably reliable 
estimate of deviations from additivity for not too narrow point contacts. For 
a comparison with experiments we refer to Refs. 307 and 329. A fully 
quantum mechanical calculation of the series resistance has been carried out 
numerically by Baranger (reported in Ref. 306) for two closely spaced 
constrictions. 

So far we have only considered the case of a zero magnetic field. In a weak 
magnetic field (2lcYc, > L) the situation is rather complicated. As discussed in 
detail in Ref. 329, there are two competing effects in weak fields: On the one 
hand, the deflection of the electron beam by the Lorentz force reduces the 
direct transmission probability, with the effect of decreasing the series 
conductance. On the other hand, the magnetic field enhances the indirect 
transmission, with the opposite effect. The result is an initial decreuse in the 
series conductance for small magnetic fields in the case of strong collimation 
and an increase in the case of weak collimation. This is expected to be a 
relatively small effect compared with the effects at stronger fields that are 
discussed below. 

In stronger fields (21,,,,, < L), the direct transmission probability vanishes, 
which greatly simplifies the situation. If we assume that all transmission 
between the opposite point contacts is with intervening equilibration, then 
the result is329 

Gserie, = 2”” (2 - L) - * 
Nwide 

( 1 5.1 0) 

Here N is the (B-dependent) number of occupied subbands in the point 
contacts, and Nwide is the number of occupied Landau levels in the 2DEG 
between the point contacts. The physical origin of the simple addition rule 

370M. Buttiker, Phys. Rev. B 33, 3020 (1986). 
371M. Buttiker, IBM J. Res. Deu. 32, 63 (1988). 
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(15.10) is additivity of the four-terminal longitudinal resistance ( 1  3.7). From 
this additivity it follows that for n different point contacts in series, Eq. (15.10) 
generalizes to 

where 

(15.11) 

( 1 5.1 2) 

is the four-terminal longitudinal resistance of point contact i. Equation 
(1 5.10) predicts a nonmonotonic B-dependence for Gseries. This can most 
easily be seen by disregarding the discreteness of N and Nwide. We then have 
N ,  E , / h o , ,  while the magnetic field dependence of N (for a square-well 
confining potential in the point contacts) is given by Eq. (10.8). The resulting 
B-dependence of Gseries is shown in Fig. 64 (dotted curves). The nonmono- 
tonic behavior is due to the delayed depopulation of subbands in the point 
contacts compared with the broad ZDEG. While the number of occupied 
Landau levels Nwide in the region between the point contacts decreases 
steadily with B for 21,,,, < L, the number N of occupied subbands in the 
point contacts remains approximately constant until 24,,,in z Wmin, with 
lc,min E lcycl( 1 - E,/E,)’’2 denoting the cyclotron radius in the point contact 
region. In this field interval Gseries increases with B, according to Eq. (15.10). 
For stronger fields, depopulation in the point contacts begins to dominate 
Gseries, leading finally to a decreasing conductance (as is the rule for single 
point contacts; see Section 13.b). The peak in Gseries thus occurs at 

The remarkable camelback shape of Gseries versus B predicted by Eq. 
(15.10) has been observed experimentally by Staring et 1 2 1 . ~ ~ ~  The data are 
shown in Fig. 64 (solid curves) for three values of the gate voltage V, at 
T= l00mK. The measurement configuration is as shown in the inset, with a 
point contact separation L = 1.0pm. The dotted curves in Fig. 64 are the 
result of a one-parameter fit to the theoretical expression. It is seen that Eq. 
(15.10) provides a good description of the overall magnetoresistance behavior 
from low magnetic fields up to the quantum Hall effect regime. The 
additional structure in the experimental curves has several different origins, 
for which we refer to the paper by Staring et ~ 2 1 . ~ ~ ’  Similar structure in the 
two-terminal resistance of a single point contact will be discussed in detail in 
Section 21. 

21c,min Wmin. 

3’2A. A. M. Staring, L. W. Molenkamp, C. W. J. Beenakker, L. P. Kouwenhoven, and C. T. 
Foxon, Phys. Rev. B. 41, 8461 (1990). 
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We emphasize that Eq. (15.10) is based on the assumption of completc 
equilibration of the current-carrying edge states in the region between the 
point contacts. In a quantizing magnetic field, local equilibrium is reached by 
inter-Landau level scattering. If the potential landscape (both in the point 
contacts themselves and in the 2DEG region in between) varies by less than 
the Landau level separation ho, on the length scale of the magnetic length 
(h/eB)’”, then inter-Landau level scattering is suppressed in the absence of 
other scattering mechanisms (see Section 18). This means that the transport 
from one point contact to the other is adiabatic. The series conductance is 
then simply Gseries = (2e2/h)N for two identical point contacts 
[N = min(N,, N,) for two different point contacts in series]. This expression 
differs from Eq. (15.10) if a barrier is present in the point contacts, since that 
causes the number N of occupied Landau levels in the point contact to be less 
than the number Nwide of occupied levels in the wide 2DEG. [In a strong 
magnetic field, N z ( E ,  - E,)/ho,, while Nwide z E,/ho,.] Adiabatic trans- 
port in a magnetic field through two point contacts in series has been studied 
experimentally by Kouwenhoven et ~ 1 . ~ ~ ~  and by Main et ~ 1 . ~ ~ ~  

16. JUNCTION SCATTERING 

In the regime of diffusive transport, the Hall bar geometry (a straight 
current-carrying channel with small side contacts for voltage drop measure- 
ments) is very convenient, since it allows an independent determination of the 
various components of the resistivity tensor. A downscaled Hall bar was 
therefore a natural first choice as a geometry to study ballistic transport in a 
2 ~ ~ ~ 6 7 . 6 8 . 7 4 . 1 3 9 . 1 7 8 . 3 6 4  Th e resistances measured in narrow-channel 
geometries are mainly determined by scattering at the junctions with the side 
probes.289 These scattering processes depend strongly on the junction shape. 
This is in contrast to the point contact geometry; compare the very similar 
results of van Wees et aL6 and Wharam et aL7 on the quantized conductance 
of point contacts of a rather different design. The strong dependence of the 
low-field Hall resistance on the junction shape was demonstrated theoretical- 
ly by Baranger and Stone358 and experimentally by Ford et and Chang 
et These results superseded many earlier attempts (listed in Ref. 360) to 
explain the discovery by Roukes et of the quenching of the Hall effect 
without modeling the shape of the junction realistically. Baranger and 
Stone358 argued that the rounded corners (present in a realistic situation) at 
the junction between the main channel and the side branches lead to a 

373L. P. Kouwenhoven, B. J. van Wees, W. Kool, C. J. P. M. Harmans, A. A. M. Staring, and C. 

374P. C. Main, P. H. Beton, B. R. Snell, A. J. M. Neves, J. R. Owers-Bradley, L. Eaves, S. P. 

375A. M. Chang, T. Y. Chang, and H. U. Baranger, Phys. Rev. Lett. 63, 996 (1989). 

T. Foxon, Phys. Rev. B 40, 8083 (1989). 

Beaumont, and C. D. W. Wilkinson, Phys. Rev. B 40, 10033 (1989). 
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suppression (quenching) of the Hall resistance at low magnetic fields as a 
consequence of the horn collimation effect discussed in Section 15.a. A Hall 
bar with straight corners, in contrast, does not show a generic suppression of 
the Hall resistance,376p378 although quenching can occur for special para- 
meter values if only a few subbands are occupied in the channel. 

The quenched Hall e f f e ~ t ~ ~ , ~ ~ * ~ ~ ~ , ~ ~ ~  is just one of a whole variety of 
magnetoresistance anomalies observed in narrow Hall bars. Other anomalies 
are the fast Hall p l a t e a ~ , ~ ~ , ~ ~ , ~ ~ . ~ ~ ~ , ~ ~ ~ , ~ ~ ~  reminiscent of quantum Hall 
plateaus, but occurring at much lower fields; the negative Hall resistance,77 as 
if the carriers were holes rather than electrons; the bend resis- 
t a n C e , 2 8 9 , 3 0 6 , 3 6 4 , 3 8 0  a longitudinal resistance associated with a current bend, 
which is negative at small magnetic fields and zero at large fields, with an 
overshoot to a positive value at intermediate fields; and more. 

In Refs. 359 and 360 we have shown that all these phenomena can be 
qualitatively explained in terms of a few simple semiclassical mechanisms 
(reviewed in Section 16.a). The effects of quantum interference and of 
quantization of the lateral motion in the narrow conductor are not essential. 
These magnetoresistance anomalies can thus be characterized as classical 
magneto size effects in the ballistic regime. In Section 5, we have discussed 
classical size effects in the quasi-ballistic regime, where the mean free path is 
larger than the channel width but smaller than the separation between the 
voltage probes. In that regime, the size effects found in a 2DEG were known 
from work on metal films and wires.lo2 These earlier investigations had not 
anticipated the diversity of magnetoresistance anomalies due to junction 
scattering in the ballistic regime. That is not surprising, considering that the 
theoretical formalism to describe a resistance measurement within a mean 
free path had not been developed in that context. Indeed, this Landauer- 
Biittiker formalism (described in Section 12) found one of its earliest 
applications268 in the context of the quenching of the Hall effect, and the 
success with which the experimental magnetoresistance anomalies can be 
described by means of this formalism forms strong evidence for its validity. 

a. Mechanisms 

The variety of magnetoresistance anomalies mentioned can be understood 
in terms of a few simple characteristics of the curved trajectories of electrons 
in a classical billiard in the presence of a perpendicular magnetic field.359*360 

376D. G. Ravenhall, H. W. Wyld, and R. L. Schult, Phys. Rev. Lett. 62, 1780 (1989); R. L. Schult, 

377G. Kirczenow, Phys. Rev. Lett. 62, 2993 (1989); Phys. Rev. B 42, 5375 (1990). 
378H. Akera and T. Ando, Surf: Sci. 229, 268 (1990). 
379C. J. B. Ford, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, D. C. Peacock, D. A. 

380Y. Avishai and Y. B. Band, Phys. Rev. Lett. 62, 2527 (1989). 

H. W. Wyld, and D. G. Ravenhall, Phys. Rev. B. 41, 12760 (1990). 

Ritchie, J. E. F. Frost, and G. A. C. Jones, Phys. Rev. B 38, 8518 (1988). 
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FIG. 65. Classical trajectories in an electron billiard, illustrating the collimation (a), scram- 
bling (b), rebound (c). magnetic guiding (d) and electron focusing (e) effects. Taken from C. W. J. 
Beenakker and H. van Houten, in “Electronic Properties of Multilayers and Low-Dimensional 
Semiconductor Structures” (J. M. Chamberlain, L. Eaves, and J. C. Portal, eds.). Plenum, 
London 1990. 

At very small magnetic fields, collimation and scrambling are the key concepts. 
The gradual widening of the channel on approaching the junction reduces the 
injection-acceptance cone, which is the cone of angles with the channel axis 
within which an electron is injected into the junction or within which an 
electron can enter the channel coming from the junction. This is the horn 
collimation effect3” discussed in Section 15.a (see Fig. 65a). If the injection- 
acceptance cone is smaller than 90°, then the cones of two channels at right 
angles do not overlap. That means that an electron approaching the side 
probe coming from the main channel will be reflected (Fig. 65a) and will then 
typically undergo multiple reflections in the junction region (Fig. 65b). The 
trajectory is thus scrambled, whereby the probability for the electron to enter 
the left or right side probe in a weak magnetic field is equalized. This 
suppresses the Hall voltage. This “scrambling” mechanism for the quenching 
of the Hall effect requires a weaker collimation than the “nozzle” mechanism 
put forward by Baranger and Stone358 (we return to both these mechanisms 
in Section 16.c). Scrambling is not effective in the geometry shown in Fig. 65c, 
in which a large portion of the boundary in the junction is oriented at 
approximately 45” with the channel axis. An electron reflected from a side 
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probe at this boundary has a large probability of entering the opposite side 
probe. This is the “rebound” mechanism for a negative Hall resistance 
proposed by Ford et al.77 

At somewhat larger magnetic fields, guiding takes over. As illustrated in 
Fig. 65d, the electron is guided by the magnetic field along equipotentials 
around the corner. Guiding is fully effective when the cyclotron radius l cyc ,  
becomes smaller than the minimal radius of curvature rmin of the corner- 
that is, for magnetic fields greater than the guiding field B ,  =_ hkF/ermi,. In the 
regime B 2 B, the junction cannot scatter the electron back into the channel 
from which it came. The absence of backscattering in this case is an entirely 
classical, weak-field phenomenon (cf. Section 13.b). Because of the absence of 
backscattering, the longitudinal resistance vanishes, and the Hall resistance 
RH becomes equal to the contact resistance of the channel, just as in the 
quantum Hall effect, but without quantization of R,. The contact resistance 
RcOntac, M (h/2e2)(z fk, W )  is approximately independent of the magnetic field 
for fields such that the cyclotron diameter 2lcYc, is greater than the channel 
width K that is, for fields below Bcrit = 2hk,/eW (see Sections 12 and 13). 
This explains the occurrence of the “last plateau” in RH for B, 5 B 5 Bcrit as a 
classical effect. At the low-field end of the plateau, the Hall resistance is 
sensitive to geometrical resonances that increase the fraction of electrons 
guided around the corner into the side probe. Figure 65e illustrates the 
occurrence of one such a geometrical resonance as a result of the magnetic 
focusing of electrons into the side probe, at magnetic fields such that the 
separation of the two perpendicular channels is an integer multiple of the 
cyclotron diameter. This is in direct analogy with electron focusing in a 
double-point contact geometry (see Section 14) and leads to periodic 
oscillations superimposed on the Hall plateau. Another geometrical re- 
sonance with similar effect is discussed in Ref. 360. 

These mechanisms for oscillations in the resistance depend on a com- 
mensurability between the cyclotron radius and a characteristic dimension of 
the junction, but do not involve the wavelength of the electrons as an 
independent length scale. This distinguishes these geometrical resonances 
conceptually from the quantum resonances due to bound states in the 
junction considered in Refs. 376, 377, and 380-382. 

b. Magnetoresistance Anomalies 

In this subsection we compare, following Ref. 360, the semiclassical theory 
with representative experiments on laterally confined two-dimensional 

381G. Kirczenow, Solid State Comm. 71,469 (1989). 
”’F. M. Peeters, in Ref. 16; Phys. Rev. Lett. 61, 589 (1988); Superlattices and Microstructures 6, 

217 (1989). 
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FIG. 66. Hall resistance as measured (solid 
curve) by Simmons et d”*, and as calculated 
dashed curve) for the hard-wall geometry in 
the inset (W = 0.8 pm and E ,  = 14 meV). The 
dotted line is R,, in a bulk 2DEG. Taken from 
C .  W. J. Beenakker and H. van Houten in 
“Electronic Properties of Multilayers and 
Low-Dimensional Semiconductor Struc- 

“ ”‘ ()O (j‘ tures,’’ (J. M. Chamberlain, L. Eaves, and J. C. 
Portal, eds.). Plenum, London, 1990. I3 ( ‘ 1 ’ )  

electron gases in high-mobility GaAs- AlGaAs heterostructures. The cal- 
culations are based on a simulation of the classical trajectories of a large 
number (typically lo4) of electrons with the Fermi energy, to determine the 
classical transmission probabilities. The resistances then follow from the 
Buttiker formula (12.12). We refer to Refs. 359 and 360 for details on the 
method of calculation. We first discuss the Hall resistance RH. 

Figure 66 shows the precursor of the classical Hall plateau (the “last 
plateau”) in a relatively wide Hall cross. The experimental data (solid curve) is 
from a paper by Simmons et The semiclassical calculation (dashed 
curve) is for a square-well confining potential of channel width W =  0.8 pm 
(as estimated in the experimental paper) and with the relatively sharp corners 
shown in the inset. The Fermi energy used in the calculation is E ,  = 14meV, 
which corresponds (via n, = E,m/nii2) to a sheet density in the channel of 
n, = 3.9 x 10’’ m-2,  somewhat below the value of 4.9 x 1015 m-’ of the bulk 
material in the experiment. Good agreement between theory and experiment 
is seen in Fig. 66. Near zero magnetic field, the Hall resistance in this 
geometry is close to the linear result RH = B/en, for a bulk 2DEG (dotted 
line). The corners are sufficiently smooth to generate a Hall plateau via the 
guiding mechanism discussed in Section 16.a. The horn collimation effect, 
however, is not sufficiently large to suppress R, at small B. Indeed, the 
injection-acceptance cone for this junction is considerably wider (about 
1 l5O) than the maximal angular opening of 90” required for quenching of the 
Hall effect via the scrambling mechanism described in Section 16.a. 

The low-field Hall resistance changes drastically if the channel width 
becomes smaller, relative to the radius of curvature of the corners. Figure 67a 
shows experimental data by Ford e t  The solid and dotted curves are for 
the geometries shown respectively in the upper left and lower right insets of 
Fig. 67a. Note that these insets indicate the gates with which the Hall crosses 
are defined electrostatically. The equipotentials in the 2DEG will be 
smoother than the contours of the gates. The experiment shows a well- 
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FIG. 67. Hall resistance as measured (a) by Ford et al.” and as calculated (b). In (a) as well as 
in (b), the solid curve corresponds to the geometry in the upper left inset, the dotted curve to the 
geometry in the lower right inset. The insets in (a) indicate the shape of the gates, not the actual 
confining potential. The insets in (b) show equipotentials of the confining potential at E ,  (thick 
contour) and 0 (thin contour). The potential rises parabolically from 0 to E,, and vanishes in the 
diamond-shaped region at the center of the junction. Taken from C. W. J. Beenakker and H. van 
Houten, in “Electronic Properties of Multilayers and Low-Dimensional Semiconductor 
Structures” (J. M. Chamberlain, L. Eaves, and J. C .  Portal, eds.). Plenum, London, 1990. 

developed Hall plateau with superimposed fine structure. At small positive 
fields R ,  is either quenched or negative, depending on the geometry. The 
geometry is seen to affect also the width of the Hall plateau but not the height. 
In Fig. 67b we give the results of the semiclassical theory for the two 
geometries in the insets, which should be reasonable representations of the 
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1 ( ‘1 ’ )  

FIG. 68. Hall resistance R ,  = R,3,24  (a) and bend resistance R ,  = R12.43 (b), as measured 
(solid curves) by Timp et d 3 0 6  and as calculated (dashed curves) for the geometry in the inset 
(consisting of a parabolic confining potential with the equipotentials at E ,  and 0 shown 
respectively as thick and thin contours; the parameters are W = lOOnm and E ,  = 3.9meV). The 
dotted line in (a) is R ,  in a bulk 2DEG. Taken from C. W. J. Beenakker and H. van Houten, in 
“Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures” (J. M. 
Chamberlain, L. Eaves, and J. C. Portal, eds.). Plenum, London, 1990. 

confining potential induced by the gates in the experiment. In the theoretical 
plot the resistance and the magnetic field are given in units of 

h n  hkF 
Ro-7-  Bo-- ,  2e kFW’ e W  

(16.1) 

where the channel width W for the parabolic confinement used is defined as 
the separation of the equipotentials at the Fermi energy (W,,, in Section 10). 
The experimental estimates W z  90nm, n, z 1.2 x l O I 5  m-’ imply 
R, = 5.2 kR, B, = 0.64 T. With these parameters the calculated resistance 
and field scales do not agree well with the experiment, which may be due in 
part to the uncertainties in the modeling of the shape of the experimental 
confining potential. The + B  asymmetry in the experimental plot is un- 
doubtedly due to asymmetries in the cross geometry [in the calculation the 
geometry has fourfold symmetry, which leads automatically to 
RH(B) = -RH(-B)] .  Apart from these differences, there is agreement in all 
the important features: the appearance of quenched and negative Hall 
resistances, the independence of the height of the last Hall plateau on the 
smoothness of the corners, and the shift of the onset of the last plateau to 
lower fields for smoother corners. The oscillations on the last plateau in the 
calculation (which, as we discussed in Section 16.a, are due to geometrical 
resonances) are also quite similar to those in the experiment, indicating that 
these are classical rather than quantum resonances. 

We now turn to the bend resistance R,. In Fig. 68 we show experimental 
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data by Timp et d 3 0 6  (solid curves) on R, = R12.43 and R ,  = R13.24 

measured in the same Hall cross (defined by gates of a shape similar to that in 
the lower right inset of Fig. 67a; see the inset of Fig. 68a for the numbering of 
the channels). The dashed curves are calculated for a parabolic confining 
potential in the channels (with the experimental values W= 100nm, 
E ,  = 3.9meV) and with corners as shown in the inset of Fig. 68a. The 
calculated quenching of the Hall resistance and the onset of the last plateau 
are in good agreement with the experiment, and also the observed overshoot 
of the bend resistance around 0.2 T as well as the width of the negative peak in 
R ,  around zero field are well described by the calculation. The calculated 
height of the negative peak, however, is too small by more than a factor of 2. 
We consider this disagreement to be significant in view of the quantitative 
agreement with the other features in both R ,  and R,. The negative peak in R ,  
is due to the fact that the collimation effect couples the current source 1 more 
strongly to voltage probe 3 than to voltage probe 4, so R ,  cc V, - V3 is 
negative for small magnetic fields (at larger fields the Lorentz force destroys 
collimation by bending the trajectories, so R, shoots up to a positive value 
until guiding takes over and brings RB down to zero by eliminating 
backscattering at the junction). The discrepancy in Fig. 68b thus seems to 
indicate that the semiclassical calculation underestimates the collimation 
effect in this geometry. The positive overshoot of R ,  seen in Fig. 68b is found 
only for rounded corners. This explains the near absence of the effect in the 
calculation of Kirczenow3” for a junction with straight corners. 

For a discussion of the temperature dependence of the magnetoresistance 
anomalies, we refer to Ref. 360. Here it suffices to note that the experiments 
discussed were carried out at temperatures around 1 K, for which we expect 
the zero-temperature semiclassical calculation to be appropriate. At lower 
temperatures the effects of quantum mechanical phase coherence that have 
been neglected will become more i m ~ 0 r t a n t . l ~ ~  At higher temperatures the 
thermal average smears out the magnetoresistance anomalies and eventually 
inelastic scattering causes a transition to the diffusive transport regime in 
which the resistances have their normal B-dependence. 

c. Electron Waveguide versus Electron Billiard 

The overall agreement between the experiments and the semiclassical 
calculations is remarkable in view of the fact that the channel width in the 
narrowest structures considered is comparable to the Fermi wavelength. 
When the first experiments on these “electron waveguides” appeared, it was 
expected that the presence of only a small number of occupied transverse 
waveguide modes would fundamentally alter the nature of electron trans- 
port.68 The results of Refs. 359 and 356 show instead that the modal structure 
plays only a minor role and that the magnetoresistance anomalies observed 
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are characteristic for the classical ballistic transport regime. The reason that a 
phenomenon such as the quenching of the Hall effect has been observed only 
in Hall crosses with narrow channels is simply that the radius of curvature of 
the corners at the junction is too small compared with the channel width in 
wider structures. This is not an essential limitation, and the various 
magnetoresistance anomalies discussed here should be observable in macro- 
scopic Hall bars with artificially smoothed corners, provided of course that 
the dimensions of the junction remain well below the mean free path. Ballistic 
transport is essential, but a small number of occupied modes is not. 

Although we believe that the characteristic features of the magnetoresis- 
tance anomalies are now understood, several interesting points of disagree- 
ment between theory and experiment remain that merit further investigation. 
One of these is the discrepancy in the magnitude of the negative bend 
resistance at zero magnetic field noted before. The disappearance of a region 
of quenched Hall resistance at low electron density is another unexpected 
observation by Chang et ~ 1 . ~ ~ ~  and Roukes et al.383 The semiclassical theory 
predicts a universal behavior (for a given geometry) if the resistance and 
magnetic field are scaled by R ,  and B, defined in Eq. (16.1). For a square-well 
confining potential the channel width W is the same at each energy, and since 
B, oc k, one would expect the field region of quenched Hall resistance to vary 
with the electron density as A. For a more realistic smooth confining 
potential, W depends on E ,  and thus on n, as well, in a way that is difficult to 
estimate reliably. In any case, the experiments point to a systematic 
disappearance of the quench at the lowest densities, which is not accounted 
for by the present theory (and has been attributed by Chang et ~ 1 . ~ ' ~  to 
enhanced diffraction at low electron density as a result of the increase in the 
Fermi wavelength). For a detailed investigation of departures from classical 
scaling, we refer to a paper by Roukes et al.384 As a third point, we mention 
the curious density dependence of the quenching observed in approximately 
straight junctions by Roukes et al.,383 who find a low-field suppression of R ,  
that occurs only at or near certain specific values of the electron density. The 
semiclassical model applied to a straight Hall cross (either defined by a 
square well or by a parabolic confining potential) gives a low-field slope of R ,  
close to its bulk 2D value. The fully quantum mechanical calculations for a 
straight j ~ n c t i o n ~ ~ ~ , ~ ~ '  do give quenching at special parameter values, but 
not for the many-mode channels in this experiment (in which quenching 
occurs with as many as 10 modes occupied, whereas in the calculations a 
straight cross with more than 3 occupied modes in the channel does not show 
a quench). 

383M. L. Roukes, T. J. Thornton, A. Scherer, J. A. Simmons, B. P. van der Gaag, and E. D. Beebe, 

384M. L. Roukes, A. Scherer, and B. P. van der Gaag, Phys. Reo. Lett. 64, 1154 (1990). 
in Ref. 16. 
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In addition to the points of disagreement discussed, there are fine details in 
the measured magnetoresistances, expecially at the lowest temperatures 
(below 100 mK), which are not obtained in the semiclassical approximation. 
The quantum mechanical calculations358~376~377~381 show a great deal of fine 
structure due to interference of the waves scattered by the junction. The fine 
structure in most experiments is not quite as pronounced as in the 
calculations presumably partly as a result of a loss of phase coherence after 
many multiple scatterings in the junction. The limited degree of phase 
coherence in the experiments and the smoothing effect of a finite temperature 
help to make the semiclassical model work so well even for the narrowest 
channels. We draw attention to the fact that classical chaotic scattering can 
also be a source of irregular resistance fluctuations (see Ref. 360). 

Some of the most pronounced features in the quantum mechanical 
calculations are due to transmission resonances that result from the presence 
of bound states in the j ~ n ~ t i o n . ~ ~ ~ , ~ ~ ~ , ~ ~ ~ - ~ ~ ~  In Section 16.a we have 
discussed a different mechanism for transmission resonances that has a 
classical, rather than a quantum mechanical, origin. As mentioned in Section 
16.b, the oscillations on the last Hall plateau observed experimentally are 
quite well accounted for by these geometrical resonances. One way to 
distinguish experimentally between these resonance mechanisms is by means 
of the temperature dependence, which should be much weaker for the 
classical than for the quantum effect. One would thus conclude that the 
fluctuations in Fig. 67a, measured by Ford et at 4.2 K, have a classical 
origin, while the fine structure that Ford et al.3s5 observe only at mK 
temperatures (see below) is intrinsically quantum mechanical. 

The differences between the semiclassical and the quantum mechanical 
models may best be illustrated by considering once again the quenching of 
the Hall effect, which has the most subtle explanation and is the most 
sensitive to the geometry among the magnetoresistance anomalies observed 
in the ballistic regime. The classical scrambling of the trajectories after 
multiple reflections suppresses the asymmetry between the transmission 
probabilities t ,  and t ,  to enter the left or right voltage probe, and without this 
transmission asymmetry there can be no Hall voltage. We emphasize that this 
scrambling mechanism is consistent with the original findings of Baranger and 
Stone3 s8 that quenching requires collimation. The point is that the collimat- 
ion effect leads to nonoverlapping injection-acceptance cones of two per- 
pendicular channels, which ensures that electrons cannot enter the voltage 
probe from the current source directly, but rather only after multiple 
reflections (cf. Section 16.a). In this way a rather weak collimation to within 
an injection-acceptance cone of about 90" angular opening is sufficient to 

'"C. J. B. Ford, S. Washburn, M. Buttiker, C. M. Knoedler, and J. M. Hong, Surt Sci. 229,298 
(1990). 
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induce a suppression of the Hall resistance via the scrambling mechanism. 
Collimation can also suppress R ,  directly by strongly reducing t ,  and t ,  

relative to t ,  (the probability for transmission straight through the junction). 
This nozzle mechanism, introduced by Baranger and Stone,3s8 requires a 
strong collimation of the injected beam in order to affect R ,  appreciably. In 
the geometries considered here, we find that quenching of R ,  is due 
predominantly to scrambling and not to the nozzle mechanism (tl and t ,  each 
remain more than 30% of tJ, but data by Baranger and Stone358 show that 
both mechanisms can play an important role. 

There is a third proposed mechanism for the quenching of the Hall 
e f f e ~ t , ~ ~ ~ . ~ ~ ~  which is the reduction of the transmission asymmetry due to a 
bound state in the junction. The bound state mechanism is purely quantum 
mechanical and does not require collimation (in contrast to the classical 
scrambling and nozzle mechanisms). Numerical calculations have shown that 
it is only effective in straight Hall crosses with very narrow channels (not 
more than three modes occupied), and even then for special values of the 
Fermi energy only. Although this mechanism cannot account for the 
experiments performed thus far, it may become of importance in future work. 
A resonant suppression of the Hall resistance may also occur in strong 
magnetic fields, in the regime where the Hall resistance in wide Hall crosses 
would be quantized. Such an effect is intimately related to the high-field 
Aharonov-Bohm magnetoresistance oscillations in a singly connected 
geometry (see Section 2 1). Ford et have observed oscillations superim- 
posed on quantized Hall plateaux at low temperatures in very narrow crosses 
of two different shapes (see Fig. 69). The strong temperature dependence 
indicates that these oscillations are resonances due to the formation of bound 
states in the cross.306*385,386 

17. TUNNELING 

In this section we review recent experiments on tunneling through 
potential barriers in a two-dimensional electron gas. Subsection 17.a deals 
with resonant tunneling through a bound state in the region between two 
barriers. Resonant tunneling has previously been studied extensively in 
layered semiconductor heterostructures for transport perpendicular to the 

F or example, a thin AlGaAs layer embedded between two 
GaAs layers forms a potential barrier, whose height and width can be tailored 

386M. Biittiker, in Ref. 9. 
387R. Tsu and L. Esaki, Appl.  Phys.  Lett. 22, 562 (1973). 
388L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974). 
389E. S. Alves, L. Eaves, M. Henini, 0. H. Hughes, M. L. Leadbeater, F. W. Sheard, and G. A. 

Toombs, Electron. Lett. 24, 1190 (1988). 
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FIG. 69. Measured Hall resistance in an abrupt (a) and in a widened (b) cross as a function of B 
in the strong field regime. Large fluctuations are resolved at the low temperature of 22mK. The 
dotted curves indicate the reproducibility of the measurement. Taken from C. J. B. Ford et al., 
SurJ Sci. 229, 298 (1990). 

with great precision by means of advanced growth techniques (such as 
molecular beam epitaxy). Because of the free motion in the plane of the layers, 
one can only realize bound states with respect to one direction. Tunneling 
resonances are consequently smeared out over a broad energy range. A 
2DEG offers the possibility of confinement in all directions and thus of a 
sharp resonance. A gate allows one to define potential barriers of adjustable 
height in the 2DEG. In contrast, the heterostructure layers form fixed 
potential barriers, so one needs to study a current-voltage characteristic to 
tune the system through a resonance (observable as a peak in the I - I /  curve). 
The gate-induced barriers in a 2DEG offer a useful additional degree of 
freedom, allowing a study of resonant tunneling in the linear response regime 
of small applied voltages (to which we limit the discussion in this review). A 
drawback of these barriers is that their shape cannot be precisely controlled, 
or modeled, so that a description of the tunneling process will of necessity be 
qualitative. 

Subsection 17.b deals with the effects of Coulomb repulsion on tunneling 
in a 2DEG. The electrostatic effects of charge buildup in the 1D potential well 
formed by heterostructure layers have received considerable attention in 



158 C. W. J. BEENAKKER AND H. VAN HOUTEN 

recent Because of the large capacitance of the potential well in 
this case (resulting from the large surface area of the layers) these are 
macroscopic effects, involving a large number of electrons. The 3D potential 
well in a 2DEG nanostructure, in contrast, can have a very small capacitance 
and may contain a few electrons only. The tunneling of a single electron into 
the well will then have a considerable effect on the electrostatic potential 
difference with the surrounding 2DEG. For a small applied voltage this effect 
of the Coulomb repulsion can completely suppress the tunneling current. In 
metals this “Coulomb blockade” of tunneling has been studied extensive- 
ly.391 In those systems a semiclassical description suffices. The large Fermi 
wavelength in a 2DEG should allow the study of quantum mechanical effects 
on the Coulomb blockade or, more generally, of the interplay between 
electron-electron interactions and resonant tunneling.318~392,393 

a. Resonant Tunneling 

The simplest geometry in which one might expect to observe transmission 
resonances is formed by a single potential barrier across a 2DEG channel. 
Such a geometry was studied by Washburn et in a GaAs-AlGaAs 
heterostructure containing a 2-pm-wide channel with a 45-nm-long gate on 
top of the heterostructure. At low temperatures (around 20 mK) an irregular 
set of peaks was found in the conductance as a function of gate voltage in the 
region close to the depletion threshold. The amplitude of the peaks was on 
the order of e2/h. The origin of the effect could not be pinned down. The 
authors examine the possibility that transmission resonances associated with 
a square potential barrier are responsible for the oscillations in the con- 
ductance, but also note that the actual barrier is more likely to be smooth on 
the scale of the wavelength. For such a smooth barrier the transmission 
probability as a function of energy does not show oscillations. It seems most 
likely that the effect is disorder-related. Davies and N i ~ o n ~ ~ ’  have suggested 
that some of the structure observed in this experiment could be due to 
potential fluctuations in the region under the gate. These fluctuations can be 
rather pronounced close to the depletion threshold, due to the lack of 
screening in the low-density electron gas. A quantum mechanical calculation 
of transmission through such a fluctuating barrier has not been performed. 
As discussed below, conductance peaks of order e2/h occur in the case of 

390A, Zaslavsky, V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Appl.  Phys. Lett. 53, 1408 

391K. K. Likharev, IBM J .  Res. Dev. 32, 144 (1988). 
392K. N g  and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988). 
393L. I. Glazman and K. A. Matveev, Pis’ma Zh. Eksp. Teor. Fiz. 48,403 (1988) [JETP Lett. 48, 

394S. Washburn, A. B. Fowler, H. Schmid, and D. Kern, Phys. Reu. B 38, 1554 (1988). 
395J. H. Davies, Semicond. Sci. Technol. 3, 995 (1988). See also Ref. 72. 

(1988). 

445 (1988)l. 
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resonant tunneling via localized states in the barrier (associated with 
impurities), a mechanism that might well play a role in the experiment of 
Washburn et aZ.”‘ 

In pursuit of resonant tunneling in a 2DEG,  Chou et ul.396 have fabricated 
double-barrier devices involving two closely spaced short gates across a wide 
GaAs-AlGaAs heterostructure. Both the spacing and the length of the gates 
were 100 nm. They observed a peak in the transconductance (the derivative of 
the channel current with respect to the gate voltage), which was attributed to 
resonant tunneling through a quasi-bound state in the 2D potential well 
between the barriers. Palevski et ~ 1 . ~ ~ ’  have also investigated transport 
through two closely spaced potential barriers in a double-gate structure, but 
they did not find evidence for transmission resonances. 

A 3D potential well has truly bound states and is expected to show 
the strongest transmission resonances. Transport through such a cavity or 
“quantum box” has been studied theoretically by several 
authors. 3 1 8 , 3 3 3 , 3 8 2 , 3 9 8  Experiments have been performed by Smith et 

Their device is based on a quantum point contact, but contains two 
potential barriers that separate the constriction from the wide 2DEG regions 
(see the inset of Fig. 70). As the negative gate voltage is increased, a potential 
well is formed between the two barriers, resulting in confinement in all 
directions. The tunneling regime corresponds to a resistance R that is greater 
than h/2e2. It is also possible to study the ballistic regime R < h/2e2 when the 
height of the potential barriers is less than the Fermi energy. In this regime 
the transmission resonances are similar to the resonances in long quantum 
point contacts (these are determined by an interplay of tunneling through 
evanescent modes and reflection at the entrance and exit of the point contact; 
cf. Section 13). Results of Smith et u1.399-401 for the resistance as a function of 
gate voltage at 330mK are reproduced in Fig. 70. In the tunneling regime 
( R  > h/2ez) giant resistance oscillations are observed. A regular series of 
smaller resistance peaks is found in the ballistic regime ( R  < h/2e2). Martin- 
Moreno and Smith333 have modeled the electrostatic potential in the device 
of Refs. 399-401 and have performed a quantum mechanical calculation of 

al. 3 9 9-40 1 

396S. Y. Chou, D. R. Allee, R. F. W. Pease, and J. S. Harris, Jr., Appl. Phys. Lett. 55, 176 (1989). 
397A. Palevski, M. Heiblum, C. P. Umbach, C. M. Knoedler, A. N.  Broers, and R. H. Koch, Phys. 

398Y. Avishai and Y. B. Band, Phys. Reo. B 41, 3253 (1990). 
399C. G. Smith, M. Pepper, H. Ahmed, J. E. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, 

400C. G. Smith, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, 

“‘C. G. Smith, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. A. Ritchie, and G. A. C. 

Rev. Lett. 62, 1776 (1989). 

and G. A. C. Jones, Superlattices and Microstructures 5, 599 (1989). 

and G. A. C. Jones, J. Phys. C 21, L893 (1988). 

Jones, Surf: Sci. 228, 387 (1990). 
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FIG. 70. Resistance versus gate voltage of a cavity (defined by gates on top of a GaAs-AIGaAs 

heterostructure; see inset), showing plateaulike features (for R 5 h/2ez) and tunneling resonances 
(for R 2 h/2ez). The left- and right-hand curves refer to the adjacent resistance scales. Taken 
from C. E. Smith et al., Surf. Sci. 228, 387 (1990). 

the resistance. Very reasonable agreement with the experimental data in the 
ballistic regime was obtained. The tunneling regime was not compared in 
detail with the experimental data. The results were found to depend rather 
critically on the assumed chape of the potential, in particular on the rounding 
of the tops of the potential barriers. Martin-Moreno and Smith also 
investigated the effects of asymmetries in the device structure on the tunneling 
resonances and found in particular that small differences in the two barrier 
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heights (of order 10%) lead to a sharp suppression of the resonances, a finding 
that sheds light on the fact that they were observed in certain devices only. 
Experimentally, the effect of a magnetic field on the oscillations in the 
resistance versus gate voltage was also i n v e ~ t i g a t e d . ~ ~ ~ - ~ "  A strong sup- 
pression of the peaks was found in relatively weak magnetic fields (of about 
0.3 T). 

Tunneling through a cavity, as in the experiment by Smith et  al.,399-401 is 
formally equivalent to tunneling through an impurity state (see, e.g., Refs. 402 
and 403). The dramatic subthreshold structure found in the conductance of 
quasi-one-dimensional MOSFETs has been interpreted in terms of resonant 
tunneling through a series of localized K opley et  aL404 have 
observed large conductance peaks in a MOSFET with a split gate (see Fig. 
71). Below the 200-nm-wide slot in the gate, the inversion layer is interrupted 
by a potential barrier. Pronounced conductance peaks were seen at 0.5 K as 
the gate voltage was varied in the region close to threshold (see Fig. 72). No 
clear correlation was found between the channel width and the peak spacing 
or amplitude. The peaks were attributed to resonant transmission through 
single localized states associated with bound states in the Si band gap in the 
noninverted region under the gate. 

The theory of resonant tunneling of noninteracting electrons through 
localized states between two-dimensional reservoirs was developed by Xue 
and Lee405 (see also Refs. 159 and 406). If the resonances are well separated in 
energy, a single localized state will give the dominant contribution to the 
transmission probability. The maximum conductance on resonance is then 
e2/h (for one spin direction), regardless of the number of channels N in the 
 reservoir^.^^^,^^^ This maximum (which may be interpreted as a contact 
resistance, similar to that of a quantum point contact) is attained if the 
localized state has identical leak rates r L / h  and r,/h to the left and right 
reservoirs. Provided these leak rates are small (cf. Section 21) the conductance 
G as a function of Fermi energy E F  is a Lorentzian centered around the 
resonance energy E,: 

(17.1) 

This is the Breit-Wigner formula of nuclear For an asymmetri- 
cally placed impurity the peak height is reduced below e 2 / h  (by up to a factor 
4r,/r,, if rL >> rR). 

402S. J. Bending and M. R. Beasley, Phys. Rev. Lett. 55, 324 (1985). 
"03A. B. Fowler, G. L. Timp, J. J. Wainer, and R. A. Webb, Phys. Rev. Lett. 57, 138 (1986). 
"'T. E. Kopley, P. L. McEuen and R. G. Wheeler, Phys. Rev. Lett. 61, 1654 (1988); see also T. E. 

405W. Xue and P. A. Lee, Phys. Rev. B 38, 3913 (1988). 
"06V. Kalmeyer and R. B. Laughlin, Phys. Rev. B 35, 9805 (1987). 

Kopley, Ph.D. thesis, Yale University, 1989. 
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FIG. 71. Schematic diagram of a Si 
MOSFET with a split gate (a), which creates a 
potential barrier in the inversion layer (b). 
Taken from T. E. Kopley et al. Phys. Rev. Lett. 
61, 1654 (1988). 

The amplitudes of the peaks observed by Kopley et ~ 2 1 . ~ ' ~  were found to be 
in agreement with this prediction, while the line shape of an isolated peak 
could be well described by a Lorentzian (see inset of Fig. 72). (Most of the 
peaks overlapped, hampering a line-shape analysis). In addition, they studied 
the effect of a strong magnetic field on the conductance peaks and found that 
the amplitudes of most peaks were substantially suppressed. This was 
interpreted as a reduction of the leak rates because of a reduced overlap 
between the wave functions on the impurity and the reservoirs. The 
amplitude of one particular peak was found to be unaffected by the field, 
indicative of a symmetrically placed impurity in the barrier (r, = rL), while 
the width of that peak was reduced, in agreement with Eq. (17.1). This study 
therefore exhibits many characteristic features of resonant tunneling through 
a single localized state. 

Transmission resonances due to an impurity in a quantum point contact 
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FIG. 72. Oscillations in the conductance as a 
function of gate voltage at 0.5 K are attributed to 
resonant tunneling through localized states in the 
potential barrier. A second trace is shown for a 
magnetic field of 6 T (with a horizontal offset of 
-0.04V). The inset is a close-up of the largest 
peak at 6 7; together with a Lorentzian fit. Taken 
from T. E. Kopley et al. Phys. Rev. Lett. 61, 1654 
(1988). 
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FIG. 73. Conductance as a function of gate voltage for a quantum point contact at 0.55K. The 
inset is a close-up of the low-conductance regime, showing peaks attributed to transmission 
resonances associated with impurity states in the constriction. Taken from P. L. McEuen et al., 
Surj  Sci. 229, 3 12 (1990). 

or narrow channel have been studied theoretically in Refs. 241,407, and 408. 
In an experiment it may be difficult to distinguish these resonances from 
those associated with reflection at the entrance and exit of the quantum point 
contact (discussed in Section 13). A conductance peak associated with 
resonant tunneling through an impurity state in a quantum point contact was 
reported by McEuen et ~ 2 1 . ~ ~ '  The experimental results are shown in Fig. 73. 
The resonant tunneling peak is observed near the onset of the first 
conductance plateau, where G < 2e2/h. A second peak seen in Fig. 73 was 
conjectured to be a signature of resonant scattering, in analog with similar 
processes known in atomic phys i~s .~"  

We want to conclude this subsection on transmission resonances by 
discussing an experiment by Smith et u1,401,411 on what is essentially a 
Fabry-Perot interferometer. The device consists of a point contact with 
external reflectors in front of its entrance and exit. The reflectors are potential 
barriers erected by means of two additional gate electrodes (see Fig. 74a). By 

407C. S. Chu and R. S. Sorbello, Phys. Rev. B 40, 5941 (1989). 
40sJ. Masek, P. Lipavsky, and B. Kramer, J .  Phys. Condens. Matter 1,6395 (1989). 
409P. L. McEuen, B. W. Alphenaar, R. G. Wheeler, and R. N. Sacks, Surf. Sci. 229, 312 (1990). 
410G. J. Schulz, Rev. Mod. Phys. 45, 378 (1973). 
""C. G. Smith, M. Pepper, J. E. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. 

Jones, J. Phys. Condens. Matter 1, 9035 (1989). 
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FIG. 74. (a) Schematic diagram of a constriction with two adjustable external reflectors 
defined by gates on top of a GaAs-AIGaAs heterostructure. (b) Plot of the constriction 
resistance as a function of gate voltage with the external reflector gates (Yl, Y2) grounded. Inset: 
Fabry-Perot-type transmission resonances due to a variation of the gate voltage on the 
reflectors (Yl ,  Y2) (bottom panel), and Fourier power spectrum (top panel). Taken from C. G.  
Smith et al., Surf. Sci. 228, 387 (1990). 

varying the gate voltage on the external reflectors of this device, Smith et al. 
could tune the effective cavity length without changing the width of the 
narrow section. This experiment is therefore more controlled than the 
quantum dot e ~ p e r i r n e n t ~ ~ ~ - ~ O l  discussed earlier. The resulting periodic 
transmission resonances are reproduced in Fig. 74b. A new oscillation 
appears each time the separation between the reflectors increases by &/2. A 
numerical calculation for a similar geometry was performed by Avishai et 
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aL4I2 The significance of this experiment is that it is the first clear realization 
of an electrostatically tuned electron interferometer. Such a device has 
potential transistor applications. Other attempts to fabricate an electrostatic 
interferometer have been less succesful. The electrostatic Aharonov-Bohm 
effect in a ring was discussed in Section 8. The solid-state analogue of the 
microwave stub tuner (proposed by Sols et ~ 1 . ~ ' ~  and by Datta414) was 
studied experimentally by Miller et aL415 The idea is to modify the 
transmission through a narrow channel by changing the length of a side 
branch (by means of a gate across the side branch). Miller et al. have 
fabricated such a T-shaped conductor and found some evidence for the 
desired effect. Much of the structure was due, however, to disorder-related 
conductance fluctuations. The electrostatic Aharonov-Bohm effect had 
similar problems. Transport in a long and narrow channel is simply not fully 
ballistic, because of partially diffuse boundary scattering and impurity 
scattering. The device studied by Smith et al. worked because it made use of a 
very short constriction (a quantum point contact), while the modulation of 
the interferometer length was done externally in the wide 2DEG, where the 
effects of disorder are much less severe (in high-mobility material). 

b. Coulomb Blockade 

In this subsection we would like to speculate on the effects of electron- 
electron interactions on tunneling through impurities in narrow semicon- 
ductor channels, in relation to a recent paper in which Scott-Thomas et 
announced the discovery of conductance oscillations periodic in the density 
of a narrow Si inversion layer. The device features a continuous gate on top of 
a split gate, as illustrated schematically in Fig. 75. In the experiment, the 
voltage on the upper gate is varied while the split-gate voltage is kept 
constant. Figure 76 shows the conductance as a function of gate voltage at 
0.4K, as well as a set of Fourier power spectra obtained for devices of 
different length. A striking pattern of rapid periodic oscillations is seen. No 
correlation is found between the periodicity of the oscillations and the 
channel length, in contrast to the transmission resonances in ballistic 
constrictions discussed in Sections 13 and 17.a. The oscillations die out as the 
channel conductance increases toward e2/h  = 4 x Q-'. The conduc- 
tance peaks are relatively insensitive to a change in temperature, while the 
minima depend exponentially on temperature as exp( - E,/k,T), with an 
activation energy E ,  = 50 peV. Pronounced nonlinearities occur in the 

412Y. Avishai, M. Kaveh, and Y. B. Band, preprint. 
413F. Sols, M. Macucci, U. Ravioli, and K. Hess, Appl.  Phys. Lett. 54, 350 (1989). 
414S. Datta, Superlattices and Microstructures 6,  83 (1989). 
415D. S. Miller, R. K. Lake, S. Datta, M. S. Lundstrom, and R. Reifenberger, in Ref. 15. 
416J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antoniadis, Phys. 

Reo. Lett. 62, 583 (1989). 
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FIG. 75. Schematic cross sectional (a) and top (b) view of a double-gate Si MOSFET device. 
The lower split gate is at a negative voltage, confining the inversion layer (due to the positive 
voltage on the upper gate) to a narrow channel. Taken from J. H. F. Scott-Thomas et al., Phys. 
Rev. Lett. 62, 583 (1989). 
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FIG. 76. Top panel: Periodic oscillations in the conductance versus gate voltage at 0.4K for a 
10-pm-long inversion channel. Next three panels: Fourier power spectra of this curve and of data 
obtained for 2- and 1-pm-long channels. Bottom panel: Fourier spectrum for the 1-pm-long 
device in a magnetic field of 6 T. Taken from J. H. F. Scott-Thomas et al., Phys. Reu. Lett. 62,583 
(1989). 

current as a function of source-drain voltage. An interpretation in terms of 
pinned charge density waves was suggested,416 based on a model due to 
Larkin and Lee417 and Lee and Rice.418 In such a model, one expects the 
conductance to be thermally activated, because of the pinning of the charge 
density wave by impurities in the one-dimensional channel. The activation 

417A. I. Larkin and P. A. Lee, Phys. Rev. B 17, 1596 (1978). 
4L8P. A. Lee and T. M. Rice, Phys. Reo. B 19, 3970 (1979). 
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FIG. 77. Schematic representation of the bottom of 
the conduction band E ,  and Fermi energy E ,  in the 
device of Fig. 76 along the channel. The band bending 
at the connections of the narrow channel to the wide 
source S and drain D regions arises from the higher 
threshold for the electrostatic creation of a narrow 

s - inversion layer by a gate (shaded part). Tunnel 
7 ~~~~~~~~~~ - barriers associated with two scattering centers are 

shown. The maximum Fermi energy difference sus- 
EcL tainable by the Coulomb blockade, AEF = feA 

(where A = e/2C with C = C ,  + CJ, is indicated. 
Taken from H. van Houten and C. W. J. Beenakker, 
Phys. Rev. Lett. 63, 1893 (1989). 
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energy is determined by the most strongly pinned segment in the channel, and 
periodic oscillations in the conductance as a function of gate voltage 
correspond to the condition that an integer number of electrons is contained 
between the two impurities delimiting that specific segment. The same 
interpretation has been given to a similar effect observed in a narrow channel 
in a GaAs-AIGaAs heterostructure by Meirav et dSs 

We have proposed41 an alternative single-electron explanation of the 
remarkable effect discovered by Scott-Thomas et al.,416 based upon the 
concept of the Coulomb blockade of tunneling mentioned at the beginning of 
this section. L i k h a r e ~ ~ ~ '  and Mullen et ~ 2 1 . ~ ~ '  have studied theoretically the 
possibility of removing the Coulomb blockade by capacitive charging (by 
means of a gate electrode) of the region between two tunnel barriers. They 
found that the conductance of this system exhibits periodic peaks as a 
function of gate voltage, due to the modulation of the net charge {mode) on 
the interbarrier region. Following the theoretical papers,3913420 the authors 
in Ref. 419 proposed that the current through the channel in the experiment 
of Scott-Thomas et d 4 1 6  is limited by tunneling through potential barriers 
constituted by two dominant scattering centers that delimit a segment of the 
channel (see Fig. 77). Because the number of electrons localized in the region 
between the two barriers is necessarily an integer, a charge imbalance, and 
hence an electrostatic potential difference, arises between this region and the 
adjacent regions connected to wide electron gas reservoirs. As the gate 
voltage is varied, the resulting Fermi level difference AEF oscillates in a 
sawtooth pattern between feA, where A = e/2C and C = C, + C, is the 
effective capacitance of the region between the two barriers. The single- 
electron charging energy e2/2C maintains the Fermi level difference until 
AEF = keA (this is the Coulomb blockade). When AEF = feA, the energy 

419H. van Houten and C. W. J. Beenakker, Phys. Rev. Left. 63, 1893 (1989). 
420K. Mullen, E. Ben-Jacob, R. C.  Jaclevic, and Z .  Schuss, Phys. Rev. B 37,98 (1988); M. Amman, 

K. Mullen, and E. Ben-Jacob, J .  Appl. Phys. 65, 339 (1989). 
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required for the transfer of a single electron to (or from) the region between 
the two barriers vanishes so that the Coulomb blockade is removed. The 
conductance then shows a maximum at low temperatures T and source- 
drain voltages V (k,T/e, V 5 A). We note that in the case of very different 
tunneling rates through the two barriers, one would expect steps in the 
current as a function of source-drain voltage, which are not observed in the 
 experiment^.^^,^^^ For two similar barriers this “Coulomb staircase” is 
suppressed.420 The oscillation of the Fermi energy as the gate voltage is 
varied thus leads to a sequence of conductance peaks. The periodicity of the 
oscillations corresponds to the addition of a single electron to the region 
between the two scattering centers forming the tunnel barriers, so the 
oscillations are periodic in the density, as in the experiment. This single- 
electron tunneling mechanism also explains the observed activation of the 
conductance minima and the insensitivity to a magnetic field.85*416 The 
capacitance associated with the region between the scattering centers is hard 
to ascertain. The experimental value of the activation energy E ,  % 5OpeV 
would imply C % e2/2E, x F. Kastner et ~ 1 . ‘ ~ ’  argue that the 
capacitance in the device is smaller than this amount by an order of 
magnitude (the increase in the effective capacitance due to the presence of the 
gate electrodes is taken into account in their estimate). In addition, they point 
to a discrepancy between the value for the Coulomb blockade inferred from 
the nonlinear conductance and that from the thermal activation energy. The 
temperature dependence of the oscillatory conductance was found to be 
qualitatively different in the experiment by Meirav et At elevated 
temperatures an exponential T-dependence was found, but at low temper- 
atures the data suggest a much weaker Tdependence. It is clear that more 
experimental and theoretical work is needed to arrive at a definitive 
interpretation of this intriguing phenomenon. 

It would be of interest to study the effects of the Coulomb blockade of 
tunneling in a more controlled fashion in a structure with two adjustable 
potential barriers. Such an experiment was proposed by Glazman and 
Shekter,422 who studied theoretically a system similar to the cavity of the 
experiments by Smith et u1.399-401 (discussed in Section 17.a). A difficulty 
with this type of device is, as pointed out in Ref. 422, that a variation in gate 
voltage affects the barrier height (and thus their transparency) as well as the 
charge in the cavity. This is expected to lead to an exponential damping of the 
oscillations due to the Coulomb b l~ckade .~’  1*420 A characteristic feature of 
these oscillations is their insensitivity to an applied magnetic field, which can 
serve to distinguish the effect from oscillations due to resonant tunneling 

421M. A. Kastner, S. B. Field, U. Meirav, J.  H. F. Scott-Thomas, D. A. Antoniadis, and M. I. 

422L. I. Glaman and R.  I. Shekhter, J .  Phys.  Condens. Matter 1, 5811 (1989). 
Smith, Phys. Rev. Lett. 63, 1894 (1989). 



170 C. W. J. BEENAKKER AND H. VAN HOUTEN 

(Section 17.a). The field dependence of the peaks observed by Smith et 
in the tunneling regime was not reported, so the question of 

whether or not the Coulomb oscillations are observed in their experiment 
remains unanswered. In our opinion, substantial progress could be made 
with the development of thin tunnel barriers of larger height, which would be 
less sensitive to the application of an external gate voltage. If our interpre- 
tation of the experiments by Scott-Thomas et aL416 and Meirav et aLa5 is 
correct, such tunneling barriers might be formed by the incorporation of 
negatively charged impurities (e.g., ionized acceptors) in a narrow electron 
gas channel. This speculation is based on the fact that such acceptor 
impurities are present in the Si inversion layers of the experiment of Scott- 
Thomas et a1.:I6 as well as in the p-n junctions employed for lateral 
confinement by Meirav et aLa5 

As we were completing this review, we learned of several experiments that 
demonstrate the Coulomb blockade in split-gate confined GaAs- AlGaAs 
h e t e r o s t r u ~ t u r e s . ~ ~ ~ ~ ~ ~ ~  These experiments should open the way for the 
controlled study of the effects of Coulomb interactions on tunneling in 
semiconductor nanostructures. 

a/-399-401 

IV. Adiabatic Transport 

18. EDGE CHANNELS AND THE QUANTUM HALL EFFECT 

In this section we give an overview of the characteristics of adiabatic 
transport via edge channels in the regime of the quantum Hall effect as a 
background to the following sections. We restrict ourselves here to the integer 
quantum Hall effect, where the edge channels can be described by single- 
electron states. Recent developments on adiabatic transport in the regime of 
the fractional quantum Hall effect (which is fundamentally a many-body 
effect) will be considered in Section 20. 

a. Introduction 

Both the quantum Hall effect (QHE) and the quantized conductance of a 
ballistic point contact are described by the same relation, G = Ne2/h, 
between the conductance G and the number N of propagating modes at the 
Fermi level (counting both spin directions separately). The smooth transition 
from zero-field quantization to QHE that follows from this relation is evident 
from Fig. 48. The nature of the modes is very different, however, in weak and 
strong magnetic fields. As we discussed in Section 12.a, the propagating 

423R. J. Brown, M. Pepper, H. Ahmed, D. G. Hasko, R. A. Ritchie, J. E. F. Frost, D. C. Peacock, 

424L. P. Kouwenhoven, private communication; R. Haug, private communication. 
425U. Meirav, M. A. Kastner, and S. J. Wind, Phys. Rev. Lett. 65, 771 (1990). 

and G. A. C. Jones, J. Phys. Condens. Matter, 2, 2105 (1990). 
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modes in a strong magnetic field consist of edge states, which interact with 
one of the sample edges only. Edge states with the same mode index are 
referred to collectively as an edge channel. Edge channels at opposite edges 
propagate in opposite directions. In a weak magnetic field, in contrast, the 
modes consist of magnetoelectric subbands that interact with both edges. In 
that case there is no spatial separation of modes propagating in opposite 
directions. 

The different spatial extension of edge channels and magnetoelectric 
subbands leads to an entirely different sensitivity to scattering processes in 
weak and strong magnetic fields. Firstly, the zero-field conductance 
quantization is destroyed by a small amount of elastic scattering (due to 
impurities or roughness of the channel boundaries; cf. Refs. 3 13,3 16,3 17,407, 
and 408), while the QHE is robust to ~cattering.~’ This difference is a 
consequence of the suppression of backscattering by a magnetic field discussed 
in Section 13.b, which itself follows from the spatial separation at opposite 
edges of edge channels moving in opposite directions. Second, the spatial 
separation of edge channels at the same edge in the case of a smooth confining 
potential opens up the possibility of adiabatic transport (i.e., the full 
suppression of interedge channel scattering). In weak magnetic fields, 
adiabaticity is of importance within a point contact, but not on longer length 
scales (cf. Sections 13.a and 15.a). In a wide 2DEG region, scattering among 
the modes in weak fields establishes local equilibrium on a length scale given 
by the inelastic scattering length (which in a high-mobility GaAs- A1GaAs 
heterostructure is presumably not much longer than the elastic scattering 
length I- 10pm). The situation is strikingly different in a strong magnetic 
field, where the selective population and detection of edge channels observed 
by van Wees et has demonstrated the persistence of adiabaticity outside 
the point contact. 

In the absence of interedge channel scattering the various edge channels at 
the same boundary can be occupied up to different energies and consequently 
carry different amounts of current. The electron gas at the edge of the sample 
is then not in local equilibrium. Over some long distance (which is not yet 
known precisely) adiabaticity breaks down, leading to a partial equilibration 
of the edge channels. However, as demonstrated by Komiyama et ~ 1 . ~ ’ ~  acd 
by others,307*428-430 local equilibrium is not fully established even on 

426B. J. van Wees, E. M. M. Willems, C. J. P. M. Harmans, C. W. J. Beenakker, H. van Houten, J. 
G. Williamson, C. T. Foxon, and J.  J. Harris, Phys. Rev. Lett. 62, 1181 (1989). 

427S. Komiyama, H. Hirai, S. Sasa, and S. Hiyamizu, Phys. Rev. B 40, 12566 (1989). 
428B. J. van Wees, E. M. M. Willems, L. P. Kouwenhoven, C. J. P. M. Harmans, J. G. 

429B. W. Alphenaar, P. L. McEuen, R. G. Wheeler, and R. N.  Sacks, Phys. Rev. Lett. 64, 677 

430R. J. Haug and K. von Klitzing, Europhys. Lett. 10, 489 (1989). 

Williamson, C. T. Foxon, and J. J. Harris, Phys. Reo. B 39, 8066 (1989). 

(1990). 
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macroscopic length scales exceeding 0.25 mm. Since local equilibrium is a 
prerequisite for the use of a local resistivity tensor, these findings imply a 
nonlocality of the transport that had not been anticipated in theories of the 
QHE (which are commonly expressed in terms of a local re~istivity).~’ 

A theory of the QHE that is able to explain anomalies resulting from the 
absence of local equilibrium has to take into account the properties of the 
current and voltage contacts used to measure the Hall resistance. That is not 
necessary if local equilibrium is established at the voltage contacts, for the 
fundamental reason that two systems in equilibrium that are in contact have 
identical electrochemical potentials. In the Landauer-Buttiker formalism 
described in Section 12.b, the contacts are modeled by electron gas reservoirs 
and the resistances are expressed in terms of transmission probabilities of 
propagating modes at the Fermi level from one reservoir to the other. This 
formalism is not restricted to zero or weak magnetic fields, but can equally 
well be applied to the QHE, where edge channels form the modes. In this way 
Buttiker could show”2 that the nonideality of the coupling of the reservoirs 
to the conductor affects the accuracy of the QHE in the absence of local 
equilibrium. An ideal contact in the QHE is one that establishes an 
equilibrium population among the outgoing edge channels by distributing 
the injected current equally among these propagating modes (this is the 
equipartitioning of current discussed for an ideal electron waveguide in 
Section 12.b). A quantum point contact that selectively populates certain 
edge channels426 can thus be seen as an extreme example of a nonideal, or 
disordered, contact. 

b. Edge Channels in a Disordered Conductor 

After this general introduction, let us now discuss in some detail how edge 
channels are formed at the boundary of a 2DEG in a strong magnetic field. In 
Section 12.a we discussed the edge states in the case of a narrow channel 
without disorder, relevant for the point contact geometry. Edge states were 
seen to originate from Landau levels, which in the bulk lie below the Fermi 
level but rise in energy on approaching the sample boundary (cf. Fig. 40b). 
The point of intersection of the nth Landau level (n = 1,2,. . .) with the Fermi 
level forms the site of edge states belonging to the nth edge channel. The 
number N of edge channels at  E ,  is equal to the number of bulk Landau 
levels below EF. This description can easily be generalized to the case of a 
slowly varying potential energy landscape V(x,  y) in the 2DEG, in which case 
a semiclassical analysis can be applied.431 The energy E ,  of an electron at  the 
Fermi level in a strong magnetic field contains a part (n - *))ho, due to the 

431R. Kubo, S. J. Miyake, and N.  Hashitsume, “Solid State Physics,” Vol. 17 (F. Seitz and D. 
Turnbull, eds.). Academic Press, New York, 1965. M. Tsukada, J .  Phys. SOC. Jap., 41, 1466 
(1976). 



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 173 

quantized cyclotron motion and a part f*gpBB (depending on the spin 
direction) from spin splitting. The remainder is the energy EG due to the 
electrostatic potential 

E ,  = E ,  - (?I - -$))ho, f $XJ/.lBB. (18.1) 

The cyclotron orbit center R is guided along equipotentials of I/ at the 
guiding center energy E G .  As derived in Section 1 l.b, the drift velocity Vdrift of 
the orbit center (known as the guiding center drift or E x B drift) is given by 

1 
Vdrift(R) = 7 V X B, (1 8.2) 

eB 

which indeed is parallel to the equipotentials. An important distinction with 
the weak-field case of Section 1l.b is that the spatial extension of the 
cyclotron orbit can now be neglected, so I/ is evaluated at the position of the 
orbit center in Eq. (18.2) [compared with Eq. (1 1.1)]. The guiding center drift 
contributes a kinetic energy +mv& to the energy of the electron, which is 
small for large B and smooth 1/: (More precisely, $mu& << ho, if 
lVVl << ho,/l,, with I, the magnetic length defined as 1, E (h/eB)’”.) This 
kinetic energy term has therefore not been included in Eq. (18.1). 

The simplicity of the guiding center drift along equipotentials has been 
originally used in the percolation theory432-434 of the QHE, soon after its 
experimental discovery.* In this theory the existence of edge states is ignored, 
so the Hall resistance is not expressed in terms of equilibrium properties of 
the 2DEG (in contrast to the edge channel formulation that will be discussed). 
The physical requirements on the smoothness of the disorder potential have 
received considerable a t t e n t i ~ n ~ ~ ~ - ~ ~ ~  in the context of the percolation 
theory and, more r e ~ e n t l y , ~ ~ ’ - ~ ~ ’  in . the context of adiabatic transport in 
edge channels. Strong potential variations should occur on a spatial scale 
that is large compared with the magnetic length 1, (I, corresponds to the 
cyclotron radius in the QHE, lcyc, = 1,(2n - l)’jZ zz I, if the Landau level 
index ?I = 1). More rapid potential fluctuations may be present provided their 
amplitude is much less than hw, (the energy separation of Landau levels). 

432R. F. Kazarinov and S. Luryi, Phys. Rev. B 25, 7626 (1982); S. Luryi and R. F. Kazarinov, 
Phys. Rev. B 27, 1386 (1983); S. Luryi, in “High Magnetic Fields in Semiconductor Physics” 
(G. Landwehr, ed.). Springer, Berlin, 1987. 

433S. V. Iordansky, Solid State Comm. 43, 1 (1982). 
4343. A. Trugman, Phys. Rev. B 27, 7539 (1983). 
435R. Joynt and R. E. Prange, Phys. Rev. B 29, 3303 (1984). 
436R. E. Prange, in Ref. 97. 
437L. I. Glazman and M. Jonson, J. Phys. Condens. Matter 1, 5547 (1989). 
438L. I. Glazman and M. Jonson, Phys. Rev. B 41, 10686 (1990). 
439T. Martin and S. Feng, Phys. Rev. Lett. 64, 1971 (1990). 
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In Fig. 78 we have illustrated the formation of edge channels in a smooth 
potential energy landscape from various viewpoints. The wave functions of 
states at the Fermi level are extended along equipotentials at the guiding 
center energy (18.1), as shown in Fig. 78a (for Landau level index n = 1, 2 , 3  
and a single spin direction). One can distinguish between extended states near 
the sample boundaries and locaZized states encircling potential maxima and 
minima in the bulk. The extended states at the Fermi level form the edge 
channels. The edge channel with the smallest index n is closest to the sample 
boundary, because it has the largest E ,  [Eq. (18.1)]. This is seen more clearly 
in the cross-sectional plot of V(x,  y) in Fig. 78b (along the line connecting the 
two arrows in Fig. 78a). The location of the states at the Fermi level is 
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FIG. 79. Measurement configuration for the two-terminal resistance R,,, the four-terminal 

Hall resistance R,, and the longitudinal resistance RL. The edge channels at the Fermi level are 
indicated; arrows point in the direction of motion of edge channels filled by the source contact at 
chemical potential E ,  + 6p. The current is equipartitioned among the edge channels at the upper 
edge, corresponding to the case of local equilibrium. 

indicated by dots and crosses (depending on the direction of motion). The 
value of E ,  for each n is indicated by the dashed line. If the peaks and dips of 
the potential in the bulk have amplitudes below hwc/2, then only states with 
highest Landau level index can exist in the bulk at the Fermi level. This is 
obvious from Fig. 78c, which shows the total energy of a state 
E ,  + (n - 4)hwc along the same cross section as Fig. 78b. If one identifies 
k = -xeB/h ,  this plot can be compared with Fig. 40b of the dispersion 
relation E,(k) for a disorder-free electron waveguide in strong magnetic field. 

A description of the QHE based on extended edge states and localized 
bulk states, as in Fig. 78, was first put forward by Ha1pe1-h~~'  and further 
developed by several  author^.^^'-^^^ In these papers a local equilibrium is 
assumed at each edge. In the presence of a chemical potential differencd h p  
between the edges, each edge channel carries a current (e /h)Sp and thus 
contributes e 2 / h  to the Hall conductance (cf. the derivation of Landauer's 
formula in Section 12.b). In this case of local equilibrium the two-terminal 
resistance Rzt of the Hall bar is the same as the four-terminal Hall resistance 
R, = R2,  = h/e2N (see Fig. 79). The longitudinal resistance vanishes, R ,  = 0. 

440B. I. Halperin, Phys. Rev. B 25, 2185 (1982). 
441A. H. MacDonald and P. Streda, Phys. Reu. B 29, 1616 (1984). 
442S. M. Apenko and Yu. E. Lozovik, J .  Phys. C 18, 1197 (1985). 
443P. Streda, J. Kucera, and A. H. MacDonald, Phys. Rev. Lett. 59, 1973 (1987). 
444J. K. Jain and S. A. Kivelson, Phys. Reu. B 37, 4276 (1988). 
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The distinction between a longitudinal and Hall resistance is topological: A 
four-terminal resistance measurement gives RH if current and voltage 
contacts alternate along the boundary of the conductor, and R, if that is not 
the case. There is no need to further characterize the contacts in the case of 
local equilibrium at the edge. 

If the edges are not in local equilibrium, the measured resistance depends 
on the properties of the contacts. Consider, for example, a situation in which 
the edge channels at the lower edge are in equilibrium at chemical potential 
E,, while the edge channels at the upper edge are not in local equilibrium. 
The current at the upper edge is then not equipartitioned among the N 
modes. Let fn be the fraction of the total current I that is carried by states 
above E ,  in the nth edge channel at the upper edge, 1, = f n I .  The voltage 
contact at the lower edge measures a chemical potential E ,  regardless of its 
properties. The voltage contact at the upper edge, however, will measure a 
chemical potential that depends on how it couples to each of the edge 
channels. The transmission probability T. is the fraction of I ,  that is 
transmitted through the voltage probe to a reservoir at chemical potential 
E ,  + dp. The incoming current 

N N 

'in = 1 T,,fnZ, with C fn = 1, 
n = l  n = l  

has to be balanced by an outgoing current 

(18.3) 

(1 8.4) 

of equal magnitude, so that the voltage probe draws no net current. (In Eq. 
(18.4) we have applied Eq. (12.14) to identify the total transmission proba- 
bility N - R of outgoing edge channels with the sum of transmission 
probabilities T,, of incoming edge channels.) The requirement li, = I,,, 
determines dp and hence the Hall resistance UH = +(eL 

n =  1 
(18.5) 

The Hall resistance has its regular quantized value RH = h/e2N only if either 
f, = 1/N or T. = 1, for n = 1, 2, . . . , N .  The first case corresponds to local 
equilibrium (the current is equipartitioned among the modes), the second case 
to an ideal contact (all edge channels are fully transmitted). The Landauer- 
Biittiker formalism discussed in Section 12.b forms the basis on which 
anomalies in the QHE due to the absence of local equilibrium in combination 
with nonideal contacts can be treated theoretical1y.ll2 

A nonequilibrium population of the edge channels is generally the result of 
selective backscattering. Because edge channels at opposite edges of the 
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sample move in opposite directions, backscattering requires scattering from 
one edge to the other. Selective backscattering of edge channels with n 2 no is 
induced by a potential barrier across the sample,''3*339*340,427 if its height is 
between the guiding center energies of edge channel no and no - 1 (note that 
the edge channel with a larger index n has a smaller value of EG). The 
anomalous Shubnikov-De Haas effect:" to be discussed in Section 19, has 
demonstrated that selective backscattering can also occur naturally in the 
absence of an imposed potential barrier. The edge channel with the highest 
index n = N is selectively backscattered when the Fermi level approaches the 
energy (N - #KO, of the Nth bulk Landau level. The guiding center energy of 
the Nth edge channel then approaches zero, and backscattering either by 
tunneling or by thermally activated processes becomes effective, but for that 
edge channel only, which remains almost completely decoupled from the 
other N - 1 edge channels over distances as large as 250pm (although on 
that length scale the edge channels with n d N - 1 have equilibrated to a 
large extent).429 

c. Current Distribution 

The edge channel theory has been criticized on the grounds that experi- 
ments measure a nonzero current in the bulk of a Hall bar.445 In this 
subsection we want to point out that a measurement of the current 
distribution cannot be used to prove or disprove the edge channel formula- 
tion of the QHE. 

The fact that the Hall resistance can be expressed in terms of the 
transmission probabilities of edge states at the Fermi level does not imply that 
these few states carry a macroscopic current, nor does it imply that the 
current flows at the edges. A determination of the spatial current distribution 
i(r), rather than just the total current I ,  requires consideration of all the states 
below the Fermi level, which acquire a net drift velocity because of the Hall 
field. As we discussed in Section 12.b, knowledge of i(r) is not necessary to 
know the resistances in the regime of linear response, because the Einstein 
relation allows one to obtain the resistance from the diffusion constant. Edge 
channels tell you where the current flows if the electrochemical potential 
difference dp is entirely due to a density difference, relevant for the diffusion 
problem. Edge channels have nothing to say about where the current flows if 
dp is mainly of electrostatic origin, relevant for the problem of electrical 
conduction. The ratio dp/Z is the same for both problems, but i(r) is not. 

With this in mind, it remains an interesting problem to find out just how 
the current is distributed in a Hall bar, or, alternatively, what is the 
electrostatic potential profile. This problem has been treated theoretically in 

445M. E. Cage, in Ref. 97. 
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many papers.446-455 In the case of a 3D conductor, a linearly varying 
potential and uniform current density are produced by a surface charge. As 
noted by MacDonald et ~ 1 . : ~ ~  the electrostatics is qualitatively different in 
the 2D case because an edge charge 6(x - W/2) produces a potential 
proportional to lnlx - W/21, which is weighted toward the edge, and hence a 
concentration of current at the edge. 

Experiments aimed at measuring the electrostatic potential distribution 
were originally carried out by attaching contacts to the interior of the Hall 
bar and measuring the voltage differences between adjacent c o n t a ~ t s . ~ ~ ~ - ~ ~ '  
It was learned from these studies that relatively small inhomogeneities in the 
density of the 2DEG have a large effect on these voltage differences in the 
QHE regime. The main difficulty in the interpretation of such experiments is 
that the voltage difference measured between two contacts is the difference in 
electrochemical potential, not the line integral of the electric field. Biittiker461 
has argued that the voltage measured at an interior contact can exhibit large 
variations for a small increase in magnetic field without an appreciable 
change in the current distribution. Contactless measurements of the QHE 
from the absorption of microwave radiation462 are one alternative to interior 
contacts, which might be used to determine the potential (or current) 
distribution. 

Fontein et al.463 have used the birefringence of GaAs induced by an 

446A. H. MacDonald, T. M. Rice, and W. F. Brinkman, Phys. Rev. B 28, 3648 (1983). 
4470. Heinonen and P. L. Taylor, Phys. Rev. B 32,633 (1985). 
448D. J. Thouless, J .  Phys. C 18, 6211 (1985). 
449V. M. Pudalov and S. G. Semenchinskii, Pis'ma Zh. Eksp. Ror .  Fiz. 42, 188 (1985) [JETP 

450W. Maass, Europhys. Lett. 2, 39 (1986). 
451Y. Ono and T. Ohtsuki, Z. Phys. B 68,445 (1987); T. Ohtsuki and Y. Ono, J .  Phys. Soc. lap.  

452R. Johnston and L. Schweitzer, Z. Phys. B 70, 25 (1988). 
453V. Gudmundsson, R. R. Gerhardts, R. Johnston, and L. Schweitzer, 2. Phys. B 70,453 (1988). 
454T. Ando, J. Phys. SOC. Jap. 58, 3711 (1989). 
455P. C. van Son, G. H. Kruithof, and T. M. Klapwijk, Surf. Sci. 229,57 (1990); P. C. van Son and 

456G. Ebert, K. von Klitzing, and G. Weimann, J .  Phys. C 18, L257 (1985). 
457H. Z. Zheng, D. C. Tsui, and A. M. Chang, Phys. Rev. B 32, 5506 (1985). 
458E. K. Sichel, H. H. Sample, and J. P. Salerno, Phys. Rev. B 32,6975 (1987); E. K. Sichel, M. L. 

459R. Woltjer, R. Eppenga, J. Mooren, C. E. Timmering, and J. P. Andre, Europhys. Lett. 2,149 

460B. E. Kane, D. C. Tsui, and G. Weimann, Phys. Reo. Lett. 59, 1353 (1987). 
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462F. Kuchar, Festkorperprobleme 28, 45 (1988). 
463P, F. Fontein, J. A. Kleinen, P. Hendriks, F. A. P. Blom, J. H. Wolter, H. G. M. Locks, F. A. J. 

Lett. 42, 232 (1985)l. 

58, 2482 (1989). 
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FIG. 80. Electrostatic potential V, induced by passing a current through a Hall bar. The 
sample edges are at x = f 1 mm. The data points are from the experiment of Fontein et al.463, at 
two magnetic field values on the R ,  = h/4e2 quantized Hall plateau (triangles: B = 5 T; crosses: 
B = 5.25T). The solid curve is calculated from Eq. (18.9), assuming an impurity-free Hall bar 
with four filled Landau levels. The theory contains no adjustable parameters. 

electric field to perform a contactless measurement of the electrostatic 
potential distribution in a Hall bar. They measure the Hall potential profile 
V,(x) as a change in the local electrostatic potential if a current is passed 
through the Hall bar. The data points shown in Fig. 80 were taken at 1.5 K 
for two magnetic field values on the plateau of quantized Hall resistance at 
ah/e2. The potential varies steeply at the edges (at x = & 1 mm in Fig. 80) and 
is approximately linear in the bulk. The spatial resolution of the experiment 
was 70 pm, limited by the laser beam used to measure the birefringence. The 
current distribution is not directly measured, but can be estimated from the 
guiding center drift (18.2) (this assumes a slowly varying potential). The 
nonequilibrium current density i (x)  along the Hall bar is then given by 

(18.6) 

Fontein et at. thus estimate that under the conditions of their experiment two 
thirds of the total imposed current I = 5pA flows within 70pm from the 
edges while the remainder is uniformly distributed in the bulk. 

This experimental data can be modeled464 by means of an integral 
equation derived by MacDonald et for the self-consistent potential 
profile in an ideal impurity-free sample with N completely filled (spin-split) 
Landau levels. The electron charge density p,(x) in the 2DEG is given by 

(18.7) 

464C. W. J. Beenakker, unpublished. 
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This equation follows from the Schrodinger equation in a smoothly varying 
electrostatic potential, so the factor between brackets is close to unity. 
Substitution of the net charge density en, + p,(x) into the Poisson equation 
gives446 

r + W / Z  

(18.8) 

The characteristic length 5 = Nl;/na* is defined in terms of the magnetic 
length 1, and the effective Bohr radius a* = Eh2/mez (with E the dielectric 
constant). 

The integral equation (18.8) was solved numerically by MacDonald et 
al.446 and analytically by means of the Wiener-Hopf technique by Thou- 
less.448 Here we describe a somewhat simpler approach,464 which is suffi- 
ciently accurate for the present purpose. For magnetic field strengths in the 
QHE regime the length 5 is very small. For example, if N = 4, I ,  = 11.5 nm 
(for B = 5T), a* = 10nm (for GaAs with E = 1 3 ~ ,  and m = 0.067me), then 
5 = 17 nm. It is therefore meaningful to look for a solution of Eq. (18.8) in the 
limit 5 << K The result is that V,(x) = constant x In I(x - W/2)/(x + W/2)1 if 
1x1 < W/2 - 5, with a linear extrapolation from 1x1 = W/2 - 4 to 1x1 = W/2. 
One may verify that this is indeed the answer, by substituting the preceding 
expression into Eq. (18.8) and performing one partial integration. The 
arbitrary constant in the expression for V, may be eliminated in favor of the 
total current I flowing through the Hall bar, by applying Eq. (18.6) to the case 
of N filled spin-split Landau levels. This gives the final answer 

with a linear extrapolation of V, to ++lR, in the interval within 5 from the 
edge. The Hall resistance is R, = h/NeZ. The approximation (18.9) is 
equivalent for small ( to the analytical solution of Thouless, and is close to 
the numerical solutions given by MacDonald et al., even for a relatively large 
value ( / W =  0.1. 

In Fig. 80 the result (18.9) has been plotted (solid curve) for the parameters 
of the experiment by Fontein et al. ( [ /W= 0.85 x for N = 4, B = 5T, 
and W =  2 mm). The agreement with experiment is quite satisfactory in view 
of the fact that the theory contains no adjustable parameters. The theoretical 
profile is steeper at the edges than in the experiment, which may be due to the 
limited experimental resolution of 70 pm. The total voltage drop between the 
two edges in the calculation (hl/NeZ z 32 mV for I = 5 pA and N = 4) agrees 
with the measured Hall voltage of z3OmV, but the optically determined 
value of 40mV is somewhat larger-for a reason that we do not understand. 
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We have discussed this topic of the current distribution in the QHE in 
some detail to convince the reader that the concentration of the potential 
drop (and hence of the current) near the edges can be understood from the 
electrostatics of edge charges, but cannot be used to test the validity of a 
linear response formulation of the QHE in terms of edge states. Indeed, edge 
states were completely neglected in the foregoing theoretical analysis, which 
nonetheless captures the essential features of the experiment. 

19. SELECTIVE POPULATION AND DETECTION OF EDGE CHANNELS 

The absence of local equilibrium at the current or voltage contacts leads to 
anomalies in the quantum Hall effect, unless the contacts are ideal (in the 
sense that each edge channel at the Fermi level is transmitted through the 
contact with probability 1). Ideal versus disordered contacts are dealt with in 
Sections 19.a and 19.b. A quantum point contact can be seen as an extreme 
example of a disordered contact, as discussed in Section 19.c. Anomalies in 
the Shubnikov-De Haas effect due to the absence of local equilibrium are the 
subject of Section 19.d. 

a, Ideal Contacts 

In a two-terminal measurement of the quantum Hall effect the contact 
resistances of the current source and drain are measured in series with the 
Hall resistance. For this reason precision measurements of the QHE are 
usually performed in a four-terminal measurement configuration, in which 
the voltage contacts do not carry a current.445 Contact resistances then do 
not play a role, provided that local equilibrium is established near the voltage 
contacts [or, by virtue of the reciprocity relation (12.16), near the current 
contacts]. As we mentioned in Section 18, local equilibrium can be grossly 
violated in the QHE. Accurate quantization then requires that either the 
current or the voltage contacts are ideal, in the sense that the edge states at 
the Fermi level have unit transmission probability through the contacts."' 
In this subsection we return to the four-terminal measurements on a 
quantum point contact considered in Section 13.b, but now in the QHE 
regime where the earlier assumption of local equilibrium near the voltage 
contacts is no longer applicable in general. We assume strong magnetic fields 
so that the four-terminal longitudinal resistance R, of the quantum point 
contact is determined by the potential barrier in the constriction (rather than 
by its width). 

Let us apply the Landauer-Buttiker formalism to the geometry of Fig. 81. 
As in Section 13.b, the number of spin-degenerate edge channels in the wide 
2DEG and in the constriction are denoted by Nwide and Nmin, respectively. 
An ideal contact to the wide 2DEG perfectly transmits Nwide channels, 
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FIG. 81. Motion along equipotentials in the QHE regime, in a four-terminal geometry with a 
saddle-shaped potential formed by a split gate (shaded). Ideal contacts are assumed. The thin 
lines indicate the location of the edge channels at the Fermi level, with the arrows pointing in the 
direction of motion of edge channels that are populated by the contacts (crossed squares). Taken 
from H. van Houten et al., in “Nanostructured Systems” (M. A. Reed, ed.). Academic, New York 
1991. 

whereas the constriction transmits only Nmin channels. The remaining 
N w i d e  - Nmin channels are reflected back along the opposite 2DEG boundary 
(cf. Fig. 81). We denote by pl and p, the chemical potentials of adjacent 
voltage probes to the left and to the right of the constriction. The current 
source is at p s ,  and the drain at pd. Applying Eq. (12.12) to this case, using 
I, = -1, = I, I ,  = I ,  = 0, one finds for the magnetic field direction indicated 
in Fig. 81, 

(h/2e)z Nwide/*s - (Nwide - Nmin)pl, (19.1 a) 

= NwidepI - Nwide)(ls, (1 9.1 b) 

= Nwidepr  - Nminpl .  (19.1~) 

We have used the freedom to choose the zero level of chemical potential by 
fixing p d  = 0, so we have three independent (rather than four dependent) 
equations. The two-terminal resistance R2, = ps/eI following from Eq. (19.1) 
is 

h 1  R 
2t - 2e2 Nmin’ 

(19.2) 

unaffected by the presence of the additional voltage probes in Fig. 81. The 
four-terminal longitudinal resistance RL = (p ,  - p,)/eI is 

h 
(19.3) 

In the reversed field direction the same result is obtained. Equation (19.3), 
derived for ideal contacts without assuming local equilibrium near the 
contacts, is identical to Eq. (13.7), derived for the case of local equilibrium. 
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FIG. 82. Perspective view of a six-terminal Hall bar containing a point contact, showing the 
various two- and four-terminal resistances mentioned in the text. Taken from H. van Houten et 
at., in “Nanostructured Systems” (M. A. Reed, ed.). Academic, New York 1991. 

In a six-terminal measurement geometry (see Fig. 82), one can also 
measure the Hall resistance in the wide regions, which is simply 
R ,  = RZt  - RL or 

(19.4) 

which is unaffected by the presence of the constriction. This is a consequence 
of our assumption of ideal voltage probes. One can also measure the two 
four-terminal diagonal resistances R; and R, across the constriction in such 
a way that the two voltage probes are on opposite edges of the 2DEG, on 
either side of the constriction (see Fig. 82). Additivity of voltages on contacts 
tells us that R g  = R, R L  (for the magnetic field direction of Fig. 82); thus, 

On field reversal, R; and R; are interchanged. Thus, a four-terminal 
resistance [R,’ in Eq. (19.5)] can in principle be equal to the two-terminal 
resistance [RZt in Eq. (19.2)]. The main difference between these two 
quantities is that an additive contribution of the ohmic contact resistance 
(and of a part of the diffusive background resistance in weak magnetic fields) 
is eliminated in the four-terminal resistance measurement. 

The fundamental reason that the assumption of local equilibrium made in 
Section 13.b (appropriate for weak magnetic fields) and that of ideal contacts 
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FIG. 83. “Fractional” quantization in the integer QHE of the four-terminal longtudinal 

conductance RL of a point contact in a magnetic field of 1.4T at T = 0.6 K. The solid horizontal 
lines indicate the quantized plateaus predicted by Eq. (19.3), with NWid, = 5 and Nmi, = 1,2,3,4. 
The dashed lines give the location of the spin-split plateaux, which are not well resolved at this 
magnetic field value. Taken from L. P. Kouwenhoven, Master’s thesis, Delft University of 
Technology, 1988. 

made in this section (for strong fields) yield identical answers is that an ideal 
contact attached to the wide 2DEG regions induces a local equilibrium by 
equipartitioning the outgoing current among the edge channels. (This is 
illustrated in Fig. 81, where the current entering the voltage probe to the right 
of the constriction is carried by a single edge channel, while the equally large 
current flowing out of that probe is equipartitioned over the two edge 
channels available for transport in the wide region.) In weaker magnetic 
fields, when the cyclotron radius exceeds the width of the narrow 2DEG 
region connecting the voltage probe to the Hall bar, not all edge channels in 
the wide 2DEG region are transmitted into the voltage probe (even if it does 
not contain a potential barrier). This probe is then not effective in equiparti- 
tioning the current. That is the reason that the weak-field analysis in Section 
13.b required the assumption of a local equilibrium in the wide 2DEG near 
the contacts. 

We now discuss some experimental results, which confirm the behavior 
predicted by Eq. (19.3) in the QHE regime, to complement the weak-field 
experiments discussed in Section 13.b. Measurements on a quantum point 
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contact by Kouwenhoven et u1.307,465 in Fig. 83 show the quantization of the 
longitudinal conductance R; in fractions of 2e2/h (for unresolved spin 
degeneracy). The magnetic field is kept fixed at 1.4 T (such that Nwide = 5) and 
the gate voltage is varied (such that Nmin ranges from 1 to 4). Conductance 
plateaux close to 5/4, 10/3, 15/2, and 20 x (2e2/h) (solid horizontal lines) are 
observed, in accord with Eq. (19.3). Spin-split plateaux (dashed lines) are 
barely resolved at this rather low magnetic field. Similar data were reported 
by Snell et ul.342 Observations of such a “fractional” quantization due to the 
integer QHE were made before on wide Hall bars with regions of different 
electron density in ~ e r i e s , ~ ~ ~ , ~ ~ ’  but the theoretical explanation468 given at 
that time was less straightforward than Eq. (19.3). 

In the high-field regime the point contact geometry of Fig. 81 is essentially 
equivalent to a geometry in which a potential barrier is present across the 
entire width of the Hall bar (created by means of a narrow continuous gate). 
The latter geometry was studied by Haug et and by Washburn et ~ 1 . ~ ~ ~  
The geometries of both  experiment^^^^,^^^ are the same (see Figs. 84 and 85), 
but the results exhibit some interesting differences because of the different 
dimensions of gate and channel. Hauge et ~ 1 . ~ ~ ’  used a sample of macro- 
scopic dimensions, the channel width being 100pm and the gate length 10 
and 20pm. Results are shown in Fig. 84. As the gate voltage is varied, a 
quantized plateau at h/2e2 is seen in the longitudinal resistance at fixed 
magnetic field, in agreement with Eq. (19.3) (the plateau occurs for two spin- 
split Landau levels in the wide region and one spin-split level under the gate). 
A qualitatively different aspect of the data in Fig. 84, compared with Fig. 83, 
is the presence of a resistance minimum. Equation (19.3), in contrast, predicts 
that R, varies monotonically with barrier height, and thus with gate voltage. 
A model for the effect has been proposed in a different paper by Haug et 
a1.,34’ based on a competition between backscattering and tunneling through 
localized states in the barrier region. They find that edge states that are 
totally reflected at a given barrier height may be partially transmitted if the 
barrier height is further increased. The importance of tunneling is consistent 
with the increase of the amplitude of the dip as the gate length is reduced from 
20 to 10pm. A related theoretical study was performed by Zhu et ul.469 

46sL. P. Kouwenhoven, Master’s thesis, Delft University of Technology, 1988. 
466K. von Klitzing, G. Ebert, N. Kleinmichel, H. Obloh, G. Dorda, and G. Weimann, “Proc. 

ICPS 17” (J. D. Chadi and W. A. Harrison, eds.). Springer, New York, 1985. 
467D. A. Syphers, F. F. Fang, and P. J. Stiles, Stir$ Sci. 142,208 (1984); F. F. Fang and P. J. Stiles, 

Phys. Rev. B 27, 6487 (1983); F. F. Fang and P. J. Stiles, Phys. Rev. B 29, 3749 (1984). A. B. 
Berkut, Yu. V. Dubrovskii, M. S. Nunuparov, M. I. Reznikov, and V. I. Tal’yanski, Pis’rna Zh. 
Teor. Fiz. 44, 252 (1986) [ J E T P  Lett. 44, 324 (1986)l. 

468D. A. Syphers and P. J. Stiles, Phys. Rev. B 32, 6620 (1985). 
469Y. Zhu, J. Shi, and S. Feng, Phys. Reo. B 41, 8509 (1990). 
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FIG. 84 (a) Schematic view of a wide Hall bar containing a potential barrier imposed by a gate 
electrode of length b,. (b) Longitudinal resistance as a function of gate voltage in the QHE regime 
(two spin-split Landau levels are occupied in the unperturbed electron gas regions). The plateau 
shown is at R,  = h/2ez, in agreement with Eq. (19.3). Results for b, = 10pm and 20pm are 
compared. A pronounced dip develops in the device with the shortest gate length. Taken from R. 
J. Haug et af., Phys. Rev. B 39, 10892 (1989). 
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FIG. 85. (a) Schematic view of a 2-pm-wide channel containing a potential barrier imposed by a 
0.1-pm-long gate. (b) Top: diagonal resistance R13,42 = R; and longitudinal resistance 
R,,, , ,  = R, as a function of gate voltage in a strong magnetic field ( B  = 5.2T), showing a 
quantized plateau in agreement with Eqs. (19.5) and (19.3), respectively. For comparison also the 
two zero-field traces are shown, which are almost identical. Bottom: Difference R: - R,  = RH at 
5.2T. A normal quantum Hall plateau is found, with oscillatory structure superimposed in gate 
voltage regions where R; and R, are not quantized. Taken from S. Washburn et ai., Phys. Rev. 
Lett. 61, 2801 (1988). 
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Washburn et ~ 1 . ~ ~ ~  studied the longitudinal resistance of a barrier defined 
by a 0.1-pm-long gate across a 2-pm-wide channel. The relevant dimensions 
are thus nearly two orders of magnitude smaller than in the experiment of 
Haug et al. Again, the resistance is studied as a function of gate voltage at 
fixed magnetic field. The longitudinal (R ,  = R,,,, ,) and diagonal 
( R ;  5 R , 3 , 4 , )  resistances are shown in Fig. 85, as well as their difference 
[which according to Eqs. (19.3) and (19.5) would equal the Hall resistance 
RH]. In this small sample the quantized plateaux predicted by Eq. (19.3) are 
clearly seen, but the resistance dips of the large sample of Haug et ul. are not. 
We recall that resistance dips were not observed in the quantum point 
contact experiment of Fig. 83 either. The model of Haug et al.j41 would imply 
that localized states do not form in barriers of small area. Washburn et al. 
find weak resistance fluctuations in the gate voltage intervals between 
quantized plateaux. These fluctuations are presumably due to some form of 
quantum interference, but have not been further identified. 

Related experiments on the quantum Hall effect in a 2DEG with a 
potential barrier have been performed by Hirai et al. and by Komiyama et 

These studies have focused on the role of nonideal contacts in 
the QHE, which is the subject of the next subsection. 

b. Disordered Contacts 

a1.427,470-472 

The validity of Eqs. (19.2)-(19.5) in the QHE regime breaks down for 
nonideal contacts if local equilibrium near the contacts is not established. The 
treatment of Section 19.a for ideal contacts implies that the Hall voltage over 
the wide 2DEG regions adjacent to the constriction is unufected by the 
presence of the constriction or potential barrier. Experiments by Komiyama 
et ~ 1 . ~ ~ ~ 3 ~ ~ ~  have demonstrated that this is no longer true if one or more 
contacts are disordered. The analysis of their experiments is rather invol- 
ved,472 which is why we do not give a detailed discussion here. Instead we 
review a different experiment,”3 which shows a deviating Hall resistance in a 
sample with a constriction and a single disordered contact. This experiment 
can be analyzed in a relatively simple way,3o7 following the work of 
Biittiker1I2 and Komiyama et a1.427,472 

The sample geometry is that of Fig. 82. In Fig. 86 the four-terminal 
longitudinal resistance R ,  and Hall resistance R ,  are shown for both a small 
voltage (-0.3 V) and a large voltage (-2.5 V) on the gate defining the 
constriction. The longitudinal resistance decreases in weak fields because of 

470H. Hirai, S. Komiyama, S. Hiyamizu, and S. Sasa, in “Proc. ICPS 19,” p. 55 (W. Zawadaski, 

471S. Komiyama, H. Hirai, S. Sasa, and T. Fuji, Solid State Comm. 73, 91 (1990); H. Hirai, S. 

47zS. Komiyama and H. Hirai, Phys. Rev. E 40, 7767 (1989). 

ed.). Institute of Physics, Polish Academy of Sciences, 1988. 

Komiyama, S. Sasa, and T. Fujii, J .  Phys.  SOC. Jap. 58, 4086 (1989). 
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FIG. 86. Nonvanishing Shubnikov-De Haas minima in the longitudinal resistance R ,  and 
anomalous quantum Hall resistance R,, measured in the point contact geometry of Fig. 82 at 
50mK. These experimental results are extensions to higher fields of the weak-field traces shown 
in Fig. 50. The Hall resistance has been measured across the wide region, more than 100pm away 
from the constriction, yet R ,  is seen to increase if the gate voltage is raised from -0.3V to 
-2.5V. The magnitude at B = 2.2T of the deviation in RH and of the Shubnikov-De Haas 
minimum in R, are indicated by arrows, which both for R ,  and R, have a length of (h/2e2) 
(f - f), in agreement with the analysis given in the text. Taken from H. van Houten et al., in 
“Nanostructured Systems” (M. A. Reed, ed.). Academic, New York, 1991. 

reduction of backscattering, as discussed in Section 13.b. At larger fields 
Shubnikov-De Haas oscillations develop. The data for V, = -0.3 V exhibit 
zero minima in the Shubnikov-De Haas oscillations in RL and the normal 
quantum Hall resistance RH = (h/2e2)N,&, determined by the number of 
Landau levels occupied in the wide regions (Nwide  can be obtained from the 
quantum Hall effect measured in the absence of the constriction or from the 
periodicity of the Shubnikov-De Haas oscillations). 

At the higher gate voltage V, = - 2.5 V, nonvanishing minima in R, are 
seen in Fig. 86 as a result of the formation of a potential barrier in the 
constriction. At the minima, RL has the fractional quantization predicted by 
Eq. (19.3). For example, the plateau in RL around 2.2T for V, = -2.5 V is 
observed to be at RL = 2.1 kR x (h/2e2) x (4 - $), in agreement with the fact 
that the two-terminal resistance yields Nmin = 2 and the number of Landau 
levels in the wide regions Nwide = 3. In spite of this agreement, and in 
apparent conflict with Eq. (19.4), the Hall resistance RH has increased over its 
value for small gate voltages. Indeed, around 2.2T a Hall plateau at 
R, = 6.3 kR x (h/2e2)  x 4 is found for V, = -2.5 V, as if the number of 
occupied Landau levels was given by Nmin = 2 rather than by Nwide = 3. This 
unexpected deviation was noted in Ref. 113, but was not understood at the 
time. At higher magnetic fields (not shown in Fig. 86) the N = 1 plateau is 
reached, and the deviation in the Hall resistance vanishes. 

As pointed out in Ref. 307, the likely explanation of the data of Fig. 86 is 
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FIG. 87. Illustration of the flow of edge channels along equipotentials in a sample with a 
constriction (defined by the shaded gates) and a disordered voltage probe (a potential barrier in 
the probe is indicated by the shaded bar). Taken from H. van Houten et al., in “Nanostructured 
Systems” (M. A. Reed, ed.). Academic, New York. 

that one of the ohmic contacts used to measure the Hall voltage is disordered 
in the sense of Buttiker”’ that not all edge channels have unit trans- 
mission probability into the voltage probe. The disordered contact can be 
modeled by a potential barrier in the lead with a height not below that of the 
barrier in the constriction, as illustrated in Fig. 87. A net current I flows 
through the constriction, determined by its two-terminal resistance according 
to I = (2e/h)Nminps, with p s  the chemical potential of the source reservoir (the 
chemical potential of the drain reservoir pd is taken as a zero reference). 
Equation (12.12) applied to the two opposite Hall probes 1, and 1’ in Fig. 87 
takes the form (using I , ,  = I , ,  = 0, ps = (h/2e)l/Nmi,, and pd = 0) 

(19.6a) 

(19.6b) 

where we have assumed that the disordered Hall probe 1, transmits only 
N,, < Nwide edge channels because of the barrier in the lead. For the field 
direction shown in Fig. 87 one has, under the assumption of no interedge 
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channel scattering from constriction to probe I,, T,,,, = N w i d e ,  

T,+12 = T2+11 = 0, and Tl-,2 = max(0, N, ,  - Nmin). Equation (19.6) then 
leads to a Hall resistance R,  = ( p l I  - p,,)/eZ given by 

(19.7) 

In the opposite field direction the normal Hall resistance R,  = (h/2eZ)N,& is 
recovered. 

The assumption of a single disordered probe, plus absence of interedge 
channel scattering from constriction to probe, thus explains the observation 
in Fig. 86 of an anomalously high quantum Hall resistance for large gate 
voltages, such that Nmin < Nwide. Indeed, the experimental Hall resistance for 
V, = - 2.5 V has a plateau around 2.2 T close to the value RH = (h/2e2)Nii',  
(with Nmin = 2), in agreement with Eq. (19.7) if N, ,  < Nmin at this gate voltage. 
This observation demonstrates the absence of interedge channel scattering 
over 100,um (the separation of constriction and probe), but only between the 
highest-index channel (with index n = Nwide = 3) and the two lower-index 
channels. Since the n = 1 and n = 2 edge channels are either both empty or 
both filled (cf. Fig. 87, where these two edge channels lie closest to the sample 
boundary), any scattering between n = 1 and 2 would have no measurable 
effect on the resistances. As discussed in Section 19.q we know from the work 
of Alphenaar et aL4,' that (at least in the present samples) the edge channels 
with n < N w i d e  - 1 do in fact equilibrate to a large extent on a length scale of 
100 pm. 

In the absence of a constriction, or at small gate voltages (where the 
constriction is just defined), one has Nmin = Nwide so that the normal Hall 
effect is observed in both field directions. This is the situation realized in the 
experimental trace for V, = -0.3 V in Fig. 86. In very strong fields such that 
Nmin = N , ,  = N w i d e  = 1 (still assuming nonresolved spin splitting), the 
normal result R,  = h/2e2 would follow even if the contacts contain a 
potential barrier, in agreement with the experiment (not shown in Fig. 86). 
This is a more general result, which holds also for a barrier that only partially 
transmits the n = 1 edge channel."2~308~472-475 

A similar analysis as the foregoing predicts that the longitudinal resistance 
measured on the edge of the sample that contains ideal contacts retains its 
regular value (19.3). On the opposite sample edge the measurement would 
involve the disordered contact, and one finds instead 

(19.8) 

473U. Sivan, Y. Imry, and C. Hartzstein, Phys. Rev. B 39, 1242 (1989). 
474U. Sivan and Y. Imry, Phys. Rev. Lett. 61, 1001 (1988). 
475M. Buttiker, Phys. Reo. B 38, 12724 (1988). 
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for the field direction shown in Fig. 87, while Eq. (19.3) is recovered for the 
other field direction. The observation in the experiment of Fig. 86 for 
V, = -2.5V of a regular longitudinal resistance [in agreement with Eq. 
(19.3)], along with an anomalous quantum Hall resistance is thus consistent 
with this analysis. 

The  experiment^^^^.^" discussed in the following subsection are topologi- 
cally equivalent to the geometry of Fig. 87, but involve quantum point 
contacts rather than ohmic contacts. This gives the possibility of populating 
and detecting edge channels selectively, thereby enabling a study of the effects 
of a nonequilibrium population of edge channels in a controlled manner. 

c. Quantum Point Contacts 

In Section 14 we have seen how a quantum point contact can inject a 
coherent superposition of edge channels at the 2DEG boundary, in the 
coherent electron focusing e ~ p e r i m e n t . ~ ~  In that section we restricted 
ourselves to weak magnetic fields. Here we discuss the experiment by van 
Wees et a1.,426 which shows how in the QHE regime the point contacts can be 
operated in a different way as selective injectors (and detectors) of edge 
channels. We recall that electron focusing can be measured as a generalized 
Hall resistance, in which case the pronounced peaked structure due to mode 
interference is superimposed on the weak-field Hall resistance (cf. Fig. 53). If 
the weak-field electron-focusing experiments are extended to stronger magne- 
tic fields, a transition is observed to the quantum Hall effect, provided the 
injecting and detecting point contacts are not too strongly pinched The 
oscillations characteristic of mode interference disappear in this field regime, 
suggesting that the coupling of the edge channels (which form the propagat- 
ing modes from injector to collector) is suppressed, and adiabatic transport is 
realized. It is now no longer sufficient to model the point contacts by a point 
source-detector of infinitesimal width (as was done in Section 14), but a 
somewhat more detailed description of the electrostatic potential V(x, y) 
defining the point contacts and the 2DEG boundary between them is 
required. Schematically, V(x, y) is represented in Fig. 88a. Fringing fields from 
the split gate create a potential barrier in the point contacts, so V has a saddle 
form as shown. The heights of the barriers Ei, E ,  in the injector and collector 
are separately adjustable by means of the voltages on the split gates and can 
be determined from the two-terminal conductances of the individual point 
contacts. The point contact separation in the experiment of Ref. 426 is small 
(lSpm), so one can assume fully adiabatic transport from injector to 
collector in strong magnetic fields. As discussed in Section 18, adiabatic 
transport is along equipotentials at the guiding center energy E,. Note that 
the edge channel with the smallest index n has the largest guiding center 
energy [according to Eq. (18.1)]. In the absence of interedge channel 



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 193 

pd 

FIG. 88. (a) Schematic potential landscape, showing the 2DEG boundary and the saddle- 
shaped injector and collector point contacts. In a strong magnetic field the edge channels are 
extended along equipotentials at the guiding center energy, as indicated here for edge channels 
with index n = 1,2 (the arrows point in the direction of motion). In this case a Hall conductance 
of(2eZ/h)N with N = 1 would be measured by the point contacts, in spite of the presence of two 
occupied spin-degenerate Landau levels in the bulk 2DEG. Taken from C. W. J. Beenakker et al., 
Festkorperproblerne 29, 299 (1989). (b) Three-terminal conductor in the electron focusing 
geometry. Taken from H. van Houten et al., Phys. Rev. B. 39, 8556 (1989). 
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scattering, edge channels can only be transmitted through a point contact if 
E ,  exceeds the potential barrier height (disregarding tunneling through the 
barrier). The injector thus injects Ni z ( E ,  - Ei)/ho, edge channels into the 
2DEG, while the collector is capable of detecting N ,  z ( E ,  - E,)/ho, 
channels. Along the boundary of the 2DEG, however, a larger number of 
Nwide % E,/ho, edge channels, equal to the number of occupied bulk Landau 
levels in the 2DEG, are available for transport at the Fermi level. The 
selective population and detection of Landau levels leads to deviations from 
the normal Hall resistance. 

These considerations can be put on a theoretical basis by applying the 
Landauer-Biittiker formalism discussed in Section 12 to the electron- 
focusing geometry." We consider a three-terminal conductor as shown in 
Fig. 88b, with point contacts in two of the probes (injector i and collector c), 
and a wide ideal drain contact d. The collector acts as a voltage probe, 
drawing no net current, so that I ,  = 0 and I d  = - Z i .  The zero of energy is 
chosen such that p,, = 0. One then finds from Eq. (12.12) the two equations 

0 = (Nc  - RJpc - T-cpi, (19.9a) 

(h/2e)Ii = (Ni - Ri)pi - L i p c ,  (19.9b) 

and obtains for the ratio of collector voltage V ,  = p c / e  (measured relative to 
the voltage of the current drain) to injected current Ii the result 

(1 9.10) 

Here 6 = (2e2/h)2T,,T,,i, and Gi E (2eZ/h)(Ni - Ri), G, E (2e2/h)(N, - R,) 
denote the conductances of injector and collector point contact. 

For the magnetic field direction indicated in Fig. 88, the term 6 in Eq. 
(19.10) can be neglected since T,,i z 0 [the resulting Eq. (14.2) was used in 
Section 141. An additional simplification is possible in the adiabatic transport 
regime. We consider the case that the barrier in one of the two point contacts 
is sufficiently higher than in the other, to ensure that electrons that are 
transmitted over the highest barrier will have a negligible probability of being 
reflected at the lowest barrier. Then '&-, is dominated by the transmission 
probability over the highest barrier, T+, z min(Ni - Ri,  N ,  - R,). Subst- 
itution in Eq. (19.10) gives the remarkable that the Hall conductance 
G H  = Ii/Vc measured in the electron focusing geometry can be expressed 
entirely in terms of the contact conductances Gi and G,: 

GH z max(Gi, G,). (19.1 1) 

Equation (19.11) tells us that quantized values of G, occur not at 
(2e2/h)Nwide, as one would expect from the Nwide populated Landau levels in 
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FIG. 89. Experimental correlation between the conductances Gi, G ,  of injector and collector, 

and the Hall conductance G ,  = Ii /K,  shown to demonstrate the validity of Eq. (19.11) 
( T  = 1.3 K, point contact separation is 1.5 qm). The magnetic field was kept fixed (top: B = 2.5 T, 
bottom: B = 3.8T, corresponding to a number of occupied bulk Landau levels N = 3 and 2, 
respectively). By increasing the gate voltage on one half of the split-gate defining the injector, Gi 
was varied at constant G,. Taken from B. J. van Wees et al., Phys. Reo. Lett. 62, 1181 (1989). 

the 2DEG but at the smaller value of (2eZ/h)max(Ni, AT,). As shown in Fig. 89 
this is indeed observed e~perimentally.~’~ Notice in particular how any 
deviation from quantization in max(Gi, G,) is faithfully reproduced in G,, in 
complete agreement with Eq. (19.1 1). 

The experiment of Ref. 426 was repeated by Alphenaar et ~ l . ~ ”  for much 
larger point contact separations (zz 100pm), allowing a study of the length 
scale for equilibration of edge channels at the 2DEG boundary. Even after 
such a long distance, no complete equilibration of the edge channels was 
found, as manifested by a dependence of the Hall resistance on the gate 
voltage used to vary the number of edge channels transmitted through the 
point contact voltage probe (see Fig. 90). As discussed in Section 18.b, a 
dependence of the resistance on the properties of the contacts is only possible 
in the absence of local equilibrium. In contrast to the experiment by van Wees 
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FIG. 90. Results of an experiment similar to that of Fig. 89, but with a much larger separation 
of 80pm between injector and collector. Shown are Ri = G; ', R, = Gc-', and R ,  = GH1 as a 
function of the gate voltage on the collector. (T  = 0.45 K, B = 2.8 T; the normal quantized Hall 
resistance is i(h/2ez).) Regimes I, 11, and I11 are discussed in the text. Taken from B. W. 
Alphenaar et al., Phys. Rev. Lett. 64, 677 (1990). 

et ~ l . , ~ ' ~  and in disagreement with Eq. (19.11), the Hall resistance in Fig. 90 
does not simply follow the smallest of the contact resistances of current and 
voltage probe. This implies that the assumption of fully adiabatic transport 
has broken down on a length scale of 100pm. 

In the experiment a magnetic field was applied such that three edge 
channels were available at the Fermi level. The contact resistance of the 
injector was adjusted to Ri = h/2e2, so current was injected in a single edge 
channel ( n  = 1) only. The gate voltage defining the collector point contact 
was varied. In Fig. 90 the contact resistances of injector (R i )  and collector (R,) 
are plotted as a function of this gate voltage, together with the Hall resistance 
R,. At zero gate voltage the Hall resistance takes on its normal quantized 
value [RH = &h/2e2)]. On increasing the negative gate voltage three regions 
of interest are traversed (labeled 111 to I in Fig. 90). In region 111 edge 
channels 1 and 2 are completely transmitted through the collector, but the 
n = 3 channel is partially reflected. In agreement with Eq. (19.11), R,  
increases following R, .  As region I1 is entered, R,  levels off while R ,  continues 
to increase up to the 3h/2ez) quantized value. The fact that RH stops slightly 
short of this value proves that some scattering between the n = 3 and n = 1,2 
channels has occurred. On increasing the gate voltage further, R,  rises to 
h/2e2 in region I. However, RH shows hardly any increase with respect to its 
value in region 11. This demonstrates that the n = 2 and n = 1 edge channels 
have almost fully equilibrated. A quantitative analysis429 shows that, in fact, 
92% of the current originally injected into the n = 1 edge channel is 
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FIG. 91. Illustration of the spatial extension (shaded ellipsoids) of edge channels for four 
different values of the Fermi energy. The n = 3 edge channel can penetrate into the bulk by 
hybridizing with the n = 3 bulk Landau level, coexisting at the Fermi level. This would explain 
the absence of equilibration between the n = 3 and n = 1,2 edge channels. The penetration depth 
1,,, and the magnetic length are indicated. Taken from B. W. Alphenaar et al., Phys. Reo. Lett. 64, 
677 (1990). 

redistributed equally over the n = 1 and n = 2 channels, whereas only 8% is 
transferred to the n = 3 edge channel. The suppression of scattering between 
the highest-index n = N edge channel and the group of edge channels with 
n d N - 1 was found to exist only if the Fermi level lies in (or near) the Nth 
bulk Landau level. As a qualitative explanation it was ~ u g g e s t e d ~ * ~ * ~ ’ ~  that 
the Nth edge channel hybridizes with the Nth bulk Landau level when both 
types of states coexist at the Fermi level. Such a coexistence does not occur 
for n < N - 1 if the potential fluctuations are small compared with hwC (cf. 
Fig. 78). The spatial extension of the wave functions of the edge channels is 
illustrated in Fig. 91 (shaded ellipsoids) for various values of the Fermi level 
between the n = 3 and n = 4 bulk Landau levels. As the Fermi level 
approaches the n = 3 bulk Landau level, the corresponding edge channel 
penetrates into the bulk, so the overlap with the wave functions of lower- 
index edge channels decreases. This would explain the decoupling of the 
n = 3 and n = 1, 2 edge channels. 

These experiments thus point the way in which the transition from 
microscopic to macroscopic behavior takes place in the QHE, while they also 
demonstrate that quite large samples will be required before truly macro- 
scopic behavior sets in. 

d. Suppression of the Shubnikov- De Haas Oscillations 

Shubnikov-De Haas magnetoresistance oscillations were discussed in 
Sections 4.c and 10. In weak magnetic fields, where a theoretical description 

476J. K. Jain, unpublished. 



198 C. W. J. BEENAKKER AND H. VAN HOUTEN 

250 pm 
D 

P P  
FIG. 92. Illustration of the mechanism for the suppression of Shubnikov-De Haas oscillations 

due to selective detection of edge channels. The black area denotes the split-gate point contact in 
the voltage probe, which is at a distance of 250pm from the drain reservoir. Dashed arrows 
indicate symbolically the selective backscattering in the highest-index edge channel, via states in 
the highest bulk Landau level that coexist at the Fermi level. Taken from H. van Houten et al., in 
“Nanostructured Systems” (M. A. Reed, ed.). Academic, New York, 1991. 

in terms of a local resistivity tensor applies, a satisfactory agreement between 
theory and experiment is obtained.” As we now know, in strong magnetic 
fields the concept of a local resistivity tensor may break down entirely 
because of the absence of local equilibrium. A theory of the Shubnikov-De 
Haas effect then has to take into account explicitly the properties of the 
contacts used for the measurement. The resulting anomalies are considered in 
this subsection. 

Van Wees et ~ 1 . ~ ’ ~  found that the amplitude of the high-field Shubnikov- 
De Haas oscillations was suppressed if a quantum point contact was used as 
a voltage probe. To discuss this anomalous Shubnikov-De Haas effect, we 
consider the three-terminal geometry of Fig. 92, where a single voltage 
contact is present on the boundary between source and drain contacts. (An 
alternative two-terminal measurement configuration is also possible; see Ref. 
428.) The voltage probe p is formed by a quantum point contact, while source 
s and drain d are normal ohmic contacts. (Note that two special contacts were 
required for the anomalous quantum Hall effect of Section 19.c.) One 
straightforwardly finds from Eq. (12.12) that the three-terminal resistance 
R,, = (pp - pJeZ measured between point contact probe and drain is given 
by 

h TAP 
R3t = 2e2 ( N ,  - Rs)(Np - RP) - T,,,T,,,’ 

(19.12) 
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FIG. 93. Measurement of the anomalous Shubnikov-De Haas oscillations in the geometry of 
Fig. 92. The plotted longitudinal resistance is the voltage drop between contacts p and d divided 
by the current from s to d. At high magnetic fields the oscillations are increasingly suppressed as 
the point contact in the voltage probe is pinched off by increasing the negative gate voltage. The 
number of occupied spin-split Landau levels in the bulk is indicated at  several of the Shubnikov- 
De Haas maxima. Taken from B. J. van Wees et al., Phys. Rev. B. 39,8066 (1989). 

This three-terminal resistance corresponds to a generalized longitudinal 
resistance if the magnetic field has the direction of Fig. 92. In the absence of 
backscattering in the 2DEG, one has T.+p = 0, so R3,  vanishes, as it should 
for a longitudinal resistance in a strong magnetic field. 

Shubnikov-De Haas oscillations in the longitudinal resistance arise when 
backscattering leads to K+p # 0. The resistance reaches a maximum when 
the Fermi level lies in a bulk Landau level, corresponding to a maximum 
probability for backscattering (which requires scattering from one edge to the 
other across the bulk of the sample, as indicated by the dashed lines in Fig. 
92). From the preceding discussion of the anomalous quantum Hall effect, we 
know that the point contact voltage probe in a high magnetic field functions 
as a selective detector of edge channels with index n less than some value 
determined by the barrier height in the point contact. If backscattering itself 
occurs selectively for the channel with the highest index n = N ,  and if the edge 
channels with n < N - 1 do not scatter to that edge channel, then a 
suppression of the Shubnikov-De Haas oscillations is to be expected when 
R,, is measured with a point contact containing a sufficiently high potential 
barrier. This was indeed observed as shown in Fig. 93. The 
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Shubnikov-De Haas maximum at 5.2 T, for example, is found to disappear at 
gate voltages such that the point contact conductance is equal to, or smaller 
than 2e2/h, which means that the point contact only transmits two spin-split 
edge channels. The number of occupied spin-split Landau levels in the bulk at 
this magnetic field value is 3. This experiment thus demonstrates that the 
Shubnikov-De Haas oscillations result from the highest-index edge channel 
only, presumably because that edge channel can penetrate into the bulk via 
states in the bulk Landau level with the same index that coexist at the Fermi 
level (cf. Section 19.c). Moreover, it is found that this edge channel does not 
scatter to the lower-index edge channels over the distance of 250pm from 
probe p to drain d, consistent with the experiment of Alphenaar et ~ 1 . ~ ’ ~  

In Section 19.a we discussed how an “ideal” contact at the 2DEG 
boundary induces a local equilibrium by equipartitioning the outgoing 
current equally among the edge channels. The anomalous Shubnikov-De 
Haas effect provides a direct way to study this contact-induced equilibration 
by means of a second point contact between the point contact voltage probe 
p and the current drain d in Fig. 92. This experiment was also carried out by 
van Wees et al., as described in Ref. 308. Once again, use was made of the 
double-split-gate point contact device (Fig. 5b), in this case with a 1.5-pm 
separation between point contact p and the second point contact. It is found 
that the Shubnikov-De Haas oscillations in R3,  are suppressed only if the 
second point contact has a conductance of (2e2/h)(NWid, - 1) or smaller. At 
larger conductances the oscillations in R31 return, because this point contact 
can now couple to the highest-index edge channel and distribute the 
backscattered electrons over the lower-index edge channels. The point 
contact positioned between contacts p and d thus functions as a controllable 
“edge channel mixer.” 

The conclusions of the previous paragraph have interesting implications 
for the Shubnikov- De Haas oscillations in the strong-field regime even if 
measured with contacts that do not selectively detect certain edge channels 
only.307 Consider again the geometry of Fig. 92, in the low-gate voltage limit 
where the point contact voltage probe transmits all edge channels with unit 
probability. (This is the case of an “ideal” contact; cf. Section 18.b) To simplify 
expression (19.12) for the three-terminal longitudinal resistance R31, we use 
the fact that the transmission and reflection probabilities z-,,, R,, and R, 
refer to the highest-index edge channel only (with index n = N ) ,  under the 
assumptions of selective backscattering and absence of scattering to lower- 
index edge channels discussed earlier. As a consequence, K+,, R,, and R,  are 
each at most equal to 1; thus, up to corrections smaller by a factor N-’, we 
may put these terms equal to zero in the denominator on the right-hand side 
of Eq. (19.12). In the numerator, the transmission probability T+, may be 
replaced by the backscattering probability t,, < 1, which is the probability 
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that the highest-index edge channel injected by the source contact reaches the 
point contact probe following scattering across the wide 2DEG (dashed lines 
in Fig. 92). With these simplifications Eq. (19.12) takes the form (assuming 
spin degeneracy) 

tbs R3t  = 2 NZ x (1 + order W’).  (19.13) 

Only if tb, << 1 may the backscattering probability be expected to scale 
linearly with the separation of the two contacts p and d (between which the 
voltage drop is measured). If tb, is not small, then the upper limit t,, d 1 leads 
to the prediction of a maximum possible amplitude3’’ 

R,,, = - !I - x(1 + orderN-’) 
2e2 N 2  

( 1 9.14) 

of the Shubnikov-De Haas resistance oscillations in a given large magnetic 
field, independently of the length of the segment over which the voltage drop 
is measured, provided equilibration does not occur on this segment. Equili- 
bration might result, for example, from the presence of additional contacts 
between the voltage probes, as discussed before. One easily verifies that the 
high-field Shubnikov-De Haas oscillations in Fig. 93 at V, = -0.6 V (when 
the point contact is just defined, so that the potential barrier is small) lie well 
below the upper limit (19.14). For example, the peak around 2 T  corresponds 
to the case of four occupied spin-degenerate Landau levels, so the theoretical 
upper limit is (h/2e2) x z 800Q well above the observed peak value of 
about 350 R. The prediction of a maximum longitudinal resistance implies 
that the linear scaling of the amplitude of the Shubnikov-De Haas oscilla- 
tions with the distance between voltage probes found in the weak-field 
regime, and expected on the basis of a description in terms of a local 
resistivity tensor,20 breaks down in strong magnetic fields. Anomaious 
scaling of the Shubnikov-De Haas effect has been observed experiment- 
a11y457,460,466 and has recently also been interpreted430 in terms of a 
nonequilibrium between the edge channels. A quantitative experimental and 
theoretical investigation of these issues has now been carried out by McEuen 
et aL.477 

Selective backscattering and the absence of local equilibrium have 
consequences as well for the two-terminal resistance in strong magnetic 
fields.307 In weak fields one usually observes in two-terminal measurements a 
superposition of the Shubnikov-De Haas longitudinal resistance oscillations 
and the quantized Hall resistance. This superposition shows up as a 
characteristic “overshoot” of the two-terminal resistance as a function of the 

477P. L. McEuen, A. Szafer, C. A. Richter, B. W. Alphenaar, J. K. Jain, and R. N.  Sacks, Phys. 
Rev. Lett. 64, 2062 (1990). 
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magnetic field as it increases from one quantized Hall plateau to the next (the 
plateaux coincide with minima of the Shubnikov-De Haas oscillations). In 
the strong-field regime (in the absence of equilibration between source and 
drain contacts), no such superposition is to be expected. Instead, the two- 
terminal resistance would increase monotonically from (h/2e2)N - ’ to 
(h/2e2)(N - l)-’ as the transmission probability from source to drain 
decreases from N to N - 1. We are not aware of an experimental test of this 
prediction. 

The foregoing analysis assumes that the length L of the conductor is much 
greater than its width W so edge channels are the only states at the Fermi 
level that extend from source to drain. If L << W additional extended states 
may appear in the bulk of the 2DEG, whenever the Fermi level lies in a bulk 
Landau level. An experiment by Fang et al. in this short-channel regime, to 
which our analysis does not apply, is discussed by B U t t i k e ~ - . ~ ~ ~  

20. FRACTIONAL QUANTUM HALL EFFECT 

Microscopically, quantization of the Hall conductance G ,  in fractional 
multiples of e2 /h  is entirely different from quantization in integer multiples. 
While the integer quantum Hall effect’ can be explained satisfactorily in 
terms of the states of noninteracting electrons in a magnetic field (see Section 
1 X), the fractional quantum Hall effect4” exists only because of electron- 
electron interactions.479 Phenomenologically, however, the two effects are 
quite similar. Several experiments on edge channel transport in the integer 
QHE339,340-426 reviewed in Section 19 have been repeated480,481 for the 
fractional QHE with a similar outcome. The interpretation of Section 19 in 
terms of selective population and detection of edge channels cannot be 
applied in that form to the fractional QHE. Edge channels in the integer 
QHE are defined in one-to-one correspondence to bulk Landau levels 
(Section 18.b). The fractional QHE requires a generalization of the concept of 
edge channels that allows for independent current channels within the same 
Landau level. Two recent papers have addressed this p r ~ b l e m ~ ~ ~ . ~ ’ ~  and 
have obtained different answers. The present status of theory and experiment 
on transport in “fractional” edge channels is reviewed in Section 20.b, 
preceded by a brief introduction to the fractional QHE. 

478D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982). 
479R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983). 
480A. M. Chang and J. E. Cunningham, Solid State Comm. 72, 651 (1989); Surf Sci. 229, 216 

481L. P. Kouwenhoven, B. J. van Wees, N. C. van der Vaart, C. J. P. M. Harmans, C. E. 

482C. W. J.  Beenakker, Phys. Rev. Lett. 64, 216 (1990). 
483A. H. MacDonald, Phys. Rev. Lett. 64, 220 (1990). 

(1990). 

Timmering, and C. T. Foxon, Phys. Rev. Lett. 64, 685 (1990); and unpublished. 
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a. Introduction 

Excellent high-level introductions to the fractional QHE in an unbounded 
2DEG can be found in Refs. 97 and 484. The following is an oversimplifica- 
tion of Laughlin’s theory479 of the effect and is only intended to introduce the 
reader to some of the concepts that play a role in edge channel transport in 
the fractional QHE. 

It is instructive to first consider the motion of two interacting electrons in a 
strong magnetic field.485 The dynamics of the relative coordinate r decouples 
from that of the center of mass. Semiclassically, r moves along equipotentials 
of the Coulomb potential e 2 / u  (this is the guiding center drift discussed in 
Section 18.b). The relative coordinate thus executes a circular motion around 
the origin, corresponding to the two electrons orbiting around their center of 
mass. The phase shift acquired on one complete revolution, 

e 
(20.1) 

should be an integer multiple of 271 so that 

r=Im&, q = 1 , 2  , . . . .  (20.2) 

The interparticle separation in units of the magnetic length I ,  = (h/eB)’/’ is 
quantized. In the field regime where the fractional QHE is observed, only one 
spin-split Landau level is occupied in general. If the electrons have the same 
spin, the wave function should change sign when two coordinates are 
interchanged. In the case considered here of two electrons, an interchange of 
the coordinates is equivalent to r -+ -r. A change of sign is then obtained if 
the phase shift for one half revolution is an odd multiple of n (i.e., for A+ an 
odd multiple of 271). The Pauli principle thus restricts the integer 4 in Eq. 
(20.2) to odd values. 

The interparticle separation of a system of more than two electrons is not 
quantized. Still, one might surmise that the energy at densities n, z l/nF2 
corresponding to an average separation F in accord with Eq. (20.2) would be 
particularly low. This occurs when the Landau level filling factor v = hn,/eB 
equals v % l/q. Theoretical work by Laughlin, Haldane, and Hal- 
perin479,486.487 shows that the energy density u(v) of a uniform 2DEG in a 

484T. Chakraborty and P. Pietilainen, “The Fractional Quantum Hall Effect.” Springer, Berlin, 

485R. B. Laughlin, Phys. Rev. B 27, 3383 (1983). 
486F. D. M. Haldane, Phys. Reo. Lett. 51, 605 (1983). 
487B. I. Halperin, Phys. Rev. Lett. 52, 1583 (1984). 

1988. 
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strong magnetic field has downward cusps at these values of v as well as at 
other fractions, given generally by 

v = PI47 (20.3) 

with p and q mutually prime integers and q odd. The cusp in u at integer v is a 
consequence solely of Landau level quantization, according to 

duldn, = (Int[v] + *)hw,. (20.4) 

Because of the cusp in u, the chemical potential duldn, has a discontinuity 
Ap = hw, at integer v. At these values of the filling factor an infinitesimal 
increase in electron density costs a finite amount of energy, so the electron gas 
can be said to be incompressible. The cusp in u at fractional v exists because of 
the Coulomb interaction. The discontinuity A p  is now approximately 
A p  z e2/& K fi, which at a typical field of 6 T in GaAs is 10 meV, of the 
same magnitude as the Landau level separation ho, K B. 

The incompressibility of the 2DEG at v = p/q  implies that a nonzero 
minimal energy is required to add charge to the system. An important 
consequence of Laughlin's theory is that charge can be added only in the 
form of quasiparticle excitations of fractional charge e* = e/q. The dis- 
continuity A p  in the chemical potential equals the energy that it costs to 
create p pairs of oppositely charged quasiparticles (widely separated from 
each other), A p  = p x 2A with A the quasiparticle creation energy. 

The fractional QHE in a disordered macroscopic sample occurs because 
the quasiparticles are localized by potential fluctuations in the bulk of the 
2DEG. A variation of the filling factor v = p / q  + 6v in an interval around the 
fractional value changes the density of localized quasiparticles without 
changing the Hall conductance, which retains the value G H  = (p/q)e2/h. The 
precision of the QHE has been explained by L a ~ g h l i n ~ ~ ~  in terms of the 
quantization of the quasiparticle charge e*, which is argued to imply 
quantization of G H  at integer multiples of ee*/h. 

b. Fractional Edge Channels 

In a small sample the fractional QHE can occur in the absence of disorder 
and can show deviations from precise quantization. Moreover, in special 
geometries4*' G ,  can take on quantized values that are not simply related to 
e*. These observations cannot be easily understood within the conventional 
description of the fractional QHE, as outlined in the previous subsection. An 
approach along the lines of the edge channel formulation of the integer QHE 
(Sections 18 and 19) seems more promising. In Ref. 482 the concept of an edge 
channel was generalized to the fractional QHE, and a generalized Landauer 

'*'R. B. Laughlin, Phys. Rev. B 23, 5632 (1981). 
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formula relating the conductance to the transmission probabilities of the edge 
channels was derived. We review this theory and the application to experi- 
ments. A different edge channel theory by M a ~ D o n a l d ~ ~ ~  is discussed toward 
the end of this subsection. 

The edge channels for the conductance in the linear transport regime are 
defined in terms of properties of the equilibrium state of the system. If the 
electrostatic potential energy V ( x , y )  varies slowly in the 2DEG, then the 
equilibrium density distribution n(x, y )  follows by requiring that the local 
electrochemical potential V(r) + duldn has the same value p at each point r in 
the 2DEG. Here duldn is the chemical potential of the unifarrn 2DEG with 
density n(r). As discussed in Section 20.a, the internal energy density u(n) of a 
uniform interacting 2DEG in a strong magnetic field has downward cusps at 
densities n = vpBe/h corresponding to certain fractional filling factors v p .  As a 
result, the chemical potential duldn has a discontinuity (an energy gap) at 
v = v p ,  with du; fdn and d u i l d n  the two limiting values as v + vp .  As noted 
by H a l ~ e r i n ? ~ ~  when p - V lies in the energy gap the filling factor is pinned 
at the value vp. The equilibrium electron density is thus given by489 

n = v p  Belh, if du; ldn < p - V < du; ldn, 

duldn + V(r)  = p, otherwise. (20.5) 

Note that V(r)  itself depends on n(r) and thus has to be determined self- 
consistently from Eq. (20.5), taking the electrostatic screening in the 2DEG 
into account. We do not need to solve explicitly for n(r), but we can identify 
the edge channels from the following general considerations4” 

At the edge of the 2DEG, the electron density decreases from its bulk value 
to zero. Eq. (20.5) implies that this decrease is stepwise, as illustrated in Fig. 
94. The requirement on the smoothness of V for the appearance of a well- 
defined region at the edge in which v is pinned at the fractional value v p  is that 
the change in V within the magnetic length 1, is small compared with the 
energy gap du; fdn - du;/dn. This ensures that the width of this region is 
large compared with I , ,  which is a necessary (and presumably sufficient) 
condition for the formation of the incompressible state. Depending on the 
smoothness of V; one thus obtains a series of steps at v = vp  ! p  = 1,2, . . . , P )  as 
one moves from the edge toward the bulk. The series terminates in the filling 
factor vp = vbulL of the bulk, assuming that in the bulk the chemical potential 
p - V lies in an energy gap. The regions of constant v at the edge form bands 
extending along the wire. These incompressible bands [in which the compress- 
ibility x = (n2d2uldn2)- ’ = 01 alternate with bands in which p - V does not lie 
in an energy gap. The latter compressible bands (in which x > 0) may be 

489B. I. Halperin, Helu. Phys. Acta 56, 75 (1983). 
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FIG. 94. Schematic drawing of the variation in filling factor v, electrostatic potential K and 
chemical potential duldn, at a smooth boundary in a ZDEG. The dashed line in the bottom panel 
denotes the constant electrochemical potential p = V + du/dn. The dotted intervals indicate a 
discontinuity (energy gap) in du/dn and correspond in the top panel to regions of constant 
fractional filling factor v p  that spatially separate the edge channels. The width of the edge channel 
regions shrinks to zero in the integer QHE, since the compressibility x of these regions is 
infinitely large in that case. Taken from C. W. J. Beenakker, Phys. Rev. Lett. 64, 216 (1990). 

identified as the edge channels of the transport problem, as will be discussed 
later. To resolve a mi~understanding,4~' we note that the particular potential 
and density profile illustrated in Fig. 94 (in which the edge channels have a 
nonzero width) assumes that the compressibility of the edge channels is not 
infinitely large, but the subsequent analysis is independent of this assumption 
(requiring only that the edge channels are flanked by bands of zero 
compressibility). Indeed, the analysis is applicable also to the integer QHE, 
where the edge channels have an infinitely large compressibility and hence an 
infinitesimally small width (limited only by the magnetic length). 

The conductance is calculated by bringing one end of the conductor in 
contact with a reservoir at a slightly higher electrochemical potential p + Ap 
without changing V (as in the derivation of the usual Landauer formula; cf. 
Section 12.b). The resulting change An in electron density is 

(20.6) 

where 6 denotes a functional derivative. In the second equality in Eq. (20.6), 
we used the fact that n is a functional of p - V,  by virtue of Eq. (20.5). In a 

490A. M. Chang, Solid State Comm. 74, 871 (1990) 
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a b 

FIG. 95. Schematic drawing of the incompressible bands (hatched) of fractional filling factor 
vpr alternating with the edge channels (arrows indicate the direction of electron motion in each 
channel). (a) A uniform conductor. (b) A conductor containing a barrier of reduced filling factor. 
Taken from C. W. J. Beenakker, Phys. Rev. Lett. 64,216 (1990). 

strong magnetic field, this excess density moves along equipotentials with the 
guiding-center-drift velocity E / B  (E = aV/ear being the electric field). The 
component udrift of the drift velocity in the y-direction (along the conductor) is 

The current density j = - e An udrif, becomes simply 

(20.7) 

(20.8) 

It follows from Eq. (20.8) that the incompressible bands of constant v = v p  
do not contribute to j .  The reservoir injects the current into the compressible 
bands at one edge of the conductor only (for which the sign of av/ax is such 
that j moves away from the reservoir). The edge channel with index p = 1,2, 
. . . , P is defined as that compressible band that is flanked by incompressible 
bands at filling factors v p  and vp- The outermost band from the center of the 
conductor, which is the p = 1 edge channel, is included by defining formally 
vo = 0. The arrangement of alternating edge channels and compressible 
bands is illustrated in Fig. 95a. Note that different edges may have a different 
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series of edge channels at the same magnetic field value, depending on the 
smoothness of the potential V at the edge (which, as discussed before, 
determines the incompressible bands that exist at the edge). This is in contrast 
to the situation in the integer QHE, where a one-to-one correspondence 
exists between edge channels and bulk Landau levels (Section 18.b). In the 
fractional QHE an infinite hierarchy of energy gaps exists, in principle, 
corresponding to an infinite number of possible edge channels, of which only 
a small number (corresponding to the largest energy gaps) will be realized in 
practice. 

The current I ,  = (e/h)Ap(vp - v , - ~ )  injected into edge channel p by the 
reservoir follows directly from Eq. (20.8) on integration over x. The total 
current I through the wire is I = I,T,, if a fraction Tp of the injected 
current I ,  is transmitted to the reservoir at the other end of the wire (the 
remainder returning via the opposite edge). For the conductance G = eI/Ap, 
one thus obtains the generalized Landuer formula for a two-terminal 

e2 P 
G =- 1 T,Av,, 

h p = l  
(20.9) 

which differs from the usual Landauer formula by the presence of the 
fractional weight factors Av, = vp  - v p -  1 .  In the integer QHE, Av, = 1 for all 
p so that the usual Landauer formula with unit weight factor is recovered. 

A multiterminal generalization of Eq. (20.9) for a two-terminal conductor 
is easily constructed, following Buttiker’ (cf. Section 12.b): 

(20.10a) 

(20. lob) 
p =  1 

Here I ,  is the current in lead u connected to a reservoir at electrochemical 
potential pa and fractional filling factor v,. Equation (20.1Ob) defines the 
transmission probability Ts from reservoir f l  to reservoir u (or the reflection 
probability for a = f l )  in terms of a sum over the generalized edge channels in 
lead b. The contribution from each edge channel p = 1,2,. . . , P ,  contains the 
weight factor Av, = v,  - v p -  and the fraction Tp,as of the current injected by 
reservoir f l  into the pth edge channel of lead that reaches reservoir a. Apart 
from the fractional weight factors, the structure of Eq. (20.10) is the same as 
that of the usual Buttiker formula (12.12). 

Applying the generalized Landauer formula (20.9) to the ideal conductor 
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in Fig. 95a, where Tp = 1 for all p ,  one finds the quantized two-terminal 
conductance 

e2 p e2 
vp  = - vp. 

h 
G = -  1 A 

h p = ~  
(20.1 1) 

The four-terminal Hall conductance GH has the same value, because each 
edge is in local equilibrium. In the presence of disorder this edge channel 
formulation of the fractional QHE is generalized in an analogous way as in 
the integer QHE by including localized states in the bulk. In a smoothly 
varying disorder potential, these localized states take the form of circulating 
edge channels, as in Figs. 78 and 79. In this way the filling factor of the bulk 
can locally deviate from vp  without a change in the Hall conductance, leading 
to the formation of a plateau in the magnetic field dependence of GH. In a 
narrow channel, localized states are not required for a finite plateau width 
because the edge channels make it possible for the chemical potential to lie in 
an energy gap for a finite-magnetic-field interval. The Hall conductance then 
remains quantized at vp(e2/h) as long as p - I/ in the bulk lies between 
du;ldn and d u i l d n .  

We now turn to a discussion of experiments on the fractional QHE in 
semiconductor nanostructures. Timp et ~21 .4~ '  have measured the fractionally 
quantized four-terminal Hall conductance GH in a narrow cross geometry 
(defined by two sets of split gates). The channel width W x 90nm is greater 
than, but comparable to, the correlation length I ,  of the incompressible state 
in this experiment (1, x 9nm at B = 8T), so one may expect the fractional 
QHE to be modified by the lateral ~onf inement .~~ '  Timp et a1. find, in 
addition to quantized plateaux near 3, $, and 4 x e2/h, a plateau-like feature 
around 4 x e2/h.  This even-denominator fraction is not observed as a Hall 
plateau in a bulk 2DEG.493 The plateaux in GH correlate with dips in a four- 
terminal longitudinal resistance (the bend resistance defined in Section 16). 

Consider now a conductor containing a potential barrier. The potential 
barrier corresponds to a region of reduced filling factor vpm," = vmin separating 
two regions of filling factor vpmzx = v,,,. The arrangement of edge channels 
and incompressible bands is illustrated in Fig. 95b. We assume that the 
potential barrier is sufficiently smooth that scattering between the edge 
channels at opposite edges can be neglected. All transmission probabilities 
are then either 0 or 1: Tp = 1 for 1 < p d Pminr and Tp = 0 for 

491G. Timp, R. E. Behringer, J. E. Cunningham, and R. E. Howard, Phys. Rev. Lett. 63, 2268 

492S. T. Chui, Phys. Rev. Lett. 56, 2395 (1986); Phys. Rev. B 36, 2806 (1987). 
493H. W. Jiang, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 40, 12013 

(1989); G. Timp, in Ref. 9. 

(1989). 
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FIG. 96. Two-terminal conductance of a constriction containing a potential barrier, as a 
function of the voltage on the split gate defining the constriction, at a fixed magnetic field of 7T. 
The conductance is quantized according to Eq. (20.12). Taken from L. P. Kouwenhoven et al., 
unpublished. 

Pmin < p d P,,,. Equation (20.9) then tells us that the two-terminal con- 
ductance is 

G = (e2/h)vmin. (20.12) 

In Fig. 96 we show experimental data by Kouwenhoven et aL4*l of the 
fractionally quantized two-terminal conductance of a constriction containing 
a potential barrier. The constriction (or point contact) is defined by a split 
gate on top of a GaAs-AlGaAs heterostructure. The conductance in Fig. 96 
is shown for a fixed magnetic field of 7 T  as a function of the gate voltage. 
Increasing the negative gate voltage increases the barrier height, thereby 
reducing G below the Hall conductance corresponding to v,,, = 1 in the wide 
2DEG. The curve in Fig. 96 shows plateaux corresponding to vmin = 1,3, and 
3 in Eq. (20.12). The 3 plateau is not exactly quantized, but is too low by a few 
percent. The constriction width on this plateau is estimated4" at 500 nm, 
which is a factor of 50 larger than the magnetic length at B = 7T. It would 
seem that scattering between fractional edge channels at opposite edges 
(necessary to reduce the conductance below its quantized value) can only 
occur via states in the bulk for this large ratio of W/l,. 

A four-terminal measurement of the fractional QHE in a conductor 
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containing a potential barrier can be analyzed by means of Eq. (20.10), 
analogously to the case of the integer QHE discussed in Section 19. The four- 
terminal longitudinal resistance R ,  (in the geometry of Fig. 82) is given by the 
analog of Eq. (1 9.3), 

(20.13) 

provided that either the edge channels transmitted across the barrier have 
equilibrated with the extra edge channels available outside the barrier region 
or the voltage contacts are ideal; that is, they have unit transmission 
probability for all fractional edge channels. Similarly, the four-terminal 
diagonal resistances RZ defined in Fig. 82 are given by [cf. Eq. (19.5)] 

(20.14) 

Chang and C ~ n n i n g h a m ~ ' ~  have measured RL and R ,  in the fractional QHE, 
using a 1.5-pm-wide 2DEG channel with a gate across a segment of the 
channel (the gate length is also approximately 1.5 pm). Ohmic contacts to the 
gated and ungated regions allowed vmin and v,,, to be determined independ- 
ently. Equations (20.13) and (20.14) were found to hold to within 0.5% 
accuracy. This is illustrated in Fig. 97 for the case that v,,, = 1 and vmin 
varying from 1 to 2/3 on increasing the negative gate voltage (at a fixed 
magnetic field of 0.1 14T). Similar results were obtained4" for the case that 
v,,, = 5 and vmin varies from 5 to 5. 

Adiabatic transport in the fractional QHE can be studied by the selective 
population and detection of fractional edge channels, achieved by means of 
barriers in two closely separated current and voltage contacts (Fig. 98a). The 
analysis using Eq. (20.10) is completely analogous to the analysis of the 
experiment in the integer QHE,426 discussed in Section 19. Figure 98b 
illustrates the arrangement of edge channels and incompressible bands for the 
case that the chemical potential lies in an energy gap for the bulk 2DEG (at 
Y = vbulk), as well as for the two barriers (at v, and vv for the barrier in the 
current and voltage lead, respectively). Adiabatic transport is assumed over 
the barrier, as well as from barrier I to barrier V (for the magnetic field 
direction indicated in Fig. 98). Equation (20.10) for this case reduces to 

e e 
h h 

0 = - vvpv - - min(v,, v&,, (20.15) 
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FIG. 97. Four-terminal resistances of a 2DEG channel containing a potential barrier, as a 
function of the gate volrage ( B  = 0.114T, T =  70mK). The current flows from contact 1 to 
contact 5 (see inset), the resistance curves are labeled by the contacts i and j between which the 
voltage is measured. (The curves for iJ = 2,4 and 8,6 are identical.) The magnetic field points 
outward. This measurement corresponds to the case v,,, = 1 and vmin = vb varying from 1 at 
V, 2 - lOmV to 2/3 at V, x -90mV (arrow). The resistances R ,  = R2,4 = R8,6 and R& = R2,6 
are quantized according to Eqs. (20.13) and (20.14), respectively. The resistances R3,7 and R2.* 
are the Hall resistances in the gated and ungated regions, respectively. From Eq. (20.10) one can 
also derive that R8, ,  = R3,4 = R ,  and R2,3  = R7,6 = 0 on the quantized plateaux, as observed 
experimentally. Taken from A. M. Chang and J. E. Cunningham, Surf: Sci. 229, 216 (1990). 

so the Hall conductance GH = eZ/pv becomes 

e2 e2 
" -  h h 

G - - max(v,, vv) < - Vbulk. (20.16) 

The quantized Hall plateaux are determined by the fractional filling factors of 
the current and voltage leads, not of the bulk 2DEG. Kouwenhoven et a1.481 
have demonstrated the selective population and detection of fractional edge 
channels in a device with a 2-pm separation of the gates in the current and 
voltage leads. The gates extended over a length of 40pm along the 2DEG 
boundary. In Fig. 99 we reproduce one of the experimental traces of 
Kouwenhoven et al. The Hall conductance is shown for a fixed magnetic field 
of 7.8 T as a function of the gate voltage (all gates being at the same voltage). 
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(b) 
FIG. 98. (a) Schematic of the experimental geometry of Kouwenhoven et aL4*l The crossed 

squares are contacts to the 2DEG. One current lead and one voltage lead contain a barrier 
(shaded), of which the height can be adjusted by means of a gate (not drawn). The current I flows 
between contacts 1 and 3; the voltage V is measured between contacts 2 and 4. (b) Arrangement 
of incompressible bands (hatched) and edge channels near the two barriers. In the absence of 
scattering between the two fractional edge channels, one would measure a Hall conductance 
G, = I /V  that is fractionally quantized at 4 x e2/h, although the bulk has unit filling factor. 
Taken from C. W. J. Beenakker, Phys. Reo. Lett. 64, 216 (1990). 
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FIG. 99. Anomalously quantized Hall conductance in the geometry of Fig. 98, in accord with 
Eq. (20.16) (v,,,, = 1, v ,  = vv decreases from 1 to 2/3 as the negative gate voltage is increased). 
The temperature is 20 mK. The rapidly rising part (dotted) is an artifact due to barrier pinch-off. 
Taken from L. P. Kouwenhoven et al., Phys. Rev. Lett. 64, 685 (1990). 
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As the barrier heights in the two leads are increased, the Hall conductance 
decreases from the bulk value 1 x e2 /h  to the value 3 x e2/h determined by the 
leads, in accord with Eq. (20.16). A more general formula for G, valid also in 
between the quantized plateaux is shown in Ref. 481 to be in quantitative 
agreement with the experiment. 

MacDonald has, independent of Ref. 482, proposed a different generalized 
Landauer formula for the fractional QHE.483 The difference with Eq. (20.9) is 
that the weight factors in MacDonald‘s formula can take on both positive and 
negative values (corresponding to electron and hole channels). In the case of 
local equilibrium at the edge, the sum of weight factors is such that the two 
formulations give identical results. The results differ in the absence of local 
equilibrium if fractional edge channels are selectively populated and detected. 
For example, MacDonald predicts a negative longitudinal resistance in a 
conductor at filling factor v = 3 containing a segment at v = 1. Another 
implication of Ref. 483 is that the two-terminal conductance G of a conductor 
at v,,, = 1 containing a potential barrier at filling factor vmin is reduced to 
4 x e2 /h  if vmin = 3 [in accord with Eq. (20.1211, but remains at 1 x e2/h if 
vmin = 213. That this is not observed experimentally (cf. Fig. 96) could be due 
to interedge channel scattering, as argued by MacDonald. The experiment by 
Kouwenhoven et ~ 1 . ~ ~ ~  (Fig. 99), however, is apparently in the adiabatic 
regime, and was interpreted in Fig. 98 in terms of an edge channel of weight 4 
at the edge of a conductor at v = 1. In MacDonald’s formulation, the 
conductor at v = 1 has only a single edge channel of weight 1. This would 
need to be reconciled with the experimental observation of quantization of 
the Hall conductance at 5 x e2/h. 

We conclude this section by briefly addressing the question: What charge 
does the resistance measure? The fractional quantization of the conductance 
in the experiments discussed is understood as a consequence of the fractional 
weight factors in the generalized Landauer formula (20.9). These weight 
factors Avp = v p  - v p -  are not in general equal to e*/e, with e* the fractional 
charge of the quasiparticle excitations of Laughlin’s incompressible state (cf. 
Section 20.a). The reason for the absence of a one-to-one correspondence 
between Avp and e* is that the edge channels themselves are not incompress- 
ible.482 The transmission probabilities in Eq. (20.9) refer to charged “gapless” 
excitations of the edge channels, which are not identical to the charge e* 
excitations above the energy gap in the incompressible bands (the latter 
charge might be obtained from thermal activation measurements; cf. Ref. 

494R. G. Clark, J. R. Mallett, S. R. Haynes, J. J. Harris, and C. T. Foxon, Phys. Rev. Lett. 60,1747 

495S. A. Kivelson and V. L. Pokrovsky, Phys. Rev. B 40, 1373 (1989). 
(1988). 

496J. A. Simmons, H. P. Wei, L. W. Engel, D: C. Tsui, and M. Shayegan, Phys. Reu. Lett. 63,1731 
(1989). 
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494). It is an interesting and (to date) unsolved problem to determine the 
charge of the edge channel excitations. Kivelson and P o k r ~ v s k y ~ ~ ~  have 
suggested performing tunneling experiments in the fractional QHE regime 
for such a purpose, by using the charge dependence of the magnetic length 
(h/eB)'I2 (which determines the penetration of the wave function in a tunnel 
barrier and, hence, the transmission probability through the barrier). Alter- 
natively, one could use the hie periodicity of the Aharanov-Bohm mag- 
netoresistance oscillations as a measure of the edge channel charge. Simmons 
et al.496 find that the characteristic field scale of quasiperiodic resistance 
fluctuations in a 2-pm-wide Hall bar increases from 0.016 T +  30% near 
v = 1, 2, 3,4  to 0.05 T & 30% near v = 4. This is suggestive of a reduction in 
charge from e to e /3 ,  but not conclusive since the area for the Aharonov- 
Bohm effect is not well defined in a Hall bar (cf. Section 21). 

21. AHARONOV-BOHM EFFECT IN STRONG MAGNETIC FIELDS 

As mentioned briefly in Section 8, the Aharonov-Bohm oscillations in the 
magnetoresistance of a ring are gradually suppressed in strong magnetic 
fields. This suppression provides additional support for edge channel trans- 
port in the quantum Hall effect regime (Section 21.a). Entirely new mechan- 
isms for the Aharonov-Bohm effect become operative in strong magnetic 
fields. These mechanisms, resonant tunneling and resonant reflection of edge 
channels, do not require a ring geometry. Theory and experiments on 
Aharonov-Bohm oscillations in singly connected geometries are the subject 
of Section 20.b. 

a. Suppression of the Aharonov-Bohm Effect in a Ring 

In Section 8 we have seen how the quantum interference of clockwise and 
counterclockwise trajectories in a ring in the diffusive transport regime leads 
to magnetoresistance oscillations with two different periodicities: the funda- 
mental Aharonov-Bohm effect with AB = (h/e)S- periodicity, and the 
harmonic with AB = (hf2e)S- ' periodicity, where S is the area of the ring. In 
arrays of rings only the hf2e effect is observable, since the hle effect has a 
sample specific phase and is averaged to zero. In experiments by Timp et 
and by Ford et on single rings in the 2DEG of high-mobility GaAs- 
AlGaAs heterostructures, the hle effect was found predominantly. The 
amplitude of these oscillations is strongly by a large 
magnetic field (cf. the magnetoresistance traces shown in Fig. 26). This 
suppression was found to occur for fields such that 21,,,, < W where W is the 
width of the arms of the ring. The reason is that in strong magnetic fields the 

497G. Timp, P. M. Mankiewich, P. DeVegvar, R. Behringer, J. E. Cunningham, R. E. Howard, H. 
U. Baranger, and J. K. Jain, Phys. Reu. B 39, 6227 (1989). 
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FIG. 100. Illustration of a localized edge 
channel circulating along the inner perimeter 
of a ring, and of extended edge channels on the 
leads and on the outer perimeter. No 
Aharonov-Bohm magnetoresistance oscillat- 
ions can occur in the absence of scattering 
between these two types of edge channels. 

states at the Fermi level that can propagate through the ring are edge states at 
the outer perimeter. These states do not complete a revolution around the 
ring (see Fig. 100). Scattering between opposite edges is required to complete 
a revolution, but such backscattering would also lead to a nonzero longi- 
tudinal resistance. This argument’ 12,498 explains the absence of Aharonov- 
Bohm oscillations on the quantized Hall plateaux, where the longitudinal 
resistance is zero. Magnetoresistance oscillations return between the plateaux 
in the Hall resistance, but at a larger value of AB than in weak fields. Timp et 
~ 1 . ~ ~ ’  have argued that the Aharonov-Bohm oscillations in a ring in strong 
magnetic fields are associated with scattering from the outer edge to edge 
states circulating along the inner perimeter of the ring. The smaller area 
enclosed by the inner perimeter explains the increase in AB.This interpre- 
tation is supported by numerical calculations.497 

b. Aharonov- Bohm Effect in Singly Connected Geometries 

(1) Point Contact. Aharonov-Bohm oscillations in the magnetoresistance of 
a quantum point contact were discovered by van Loosdrecht et al.292 The 
magnetic field dependence of the two-terminal resistance is shown in Fig. 101, 
for various gate voltages. The periodic oscillations occur predominantly 
between quantum Hall plateaux, in a limited range of gate voltages, and only 
at low temperatures (in Fig. 101, T =  50mK; the effect has disappeared at 
1 K). The fine structure is very well reproducible if the sample is kept in the 
cold, but changes after cycling to room temperature. As one can see from the 
enlargements in Fig. 102, a splitting of the peaks occurs in a range of magnetic 
fields, presumably as spin splitting becomes resolved. A curious aspect of the 
effect (which has remained unexplained) is that the oscillations have a much 
larger amplitude in one field direction than in the other (see Fig. 101), in 
apparent conflict with the + B  symmetry of the two-terminal resistance 
required by the reciprocity relation (12.16) in the absence of magnetic 
impurities. Other devices of the same design did not show oscillations of well- 
defined periodicity and had a two-terminal resistance that was approximately 
- + B symmetric. 

498J. K. Jain, Phys. Reo. Lett. 60, 2074 (1988). 
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FIG. 101. Two-terminal magnetoresistance of a point contact for a series of gate voltages at 
T =  50mK, showing oscillations that are periodic in B between the quantum Hall plateaux. 
The second, third, and fourth curves from the bottom have offsets of, respectively, 5, 10, and 
15 kQ. The rapid oscillations below 1 T are Shubnikov-De Haas oscillations periodic in 1/B, 
originating from the wide 2DEG regions. The sharp peak around B = OT originates from the 
ohmic contacts. Taken from P. H. M. van Loosdrecht et al., Phys. Reo. B 38, 10162 (1988). 
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FIG. 102. Curves a and b are close-ups of the curve for V, = - 1.7 V in Fig. 101. Curve c is a 

separate measurement on the same device (note the different field scale due to a change in 
electron density in the constriction). Taken from P. H. M. van Loosdrecht et al., Phys. Reo. B 38, 
10162 (1988). 
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FIG. 103. Equipotentials at the guiding center energy in the saddle-shaped potential created 
by a split gate (shaded). Aharonov-Bohm oscillations in the point contact magnetoresistance 
result from the interference of tunneling paths ab and adcb. Tunneling from a to b may be 
assisted by an impurity at the entrance of the constriction. Taken from P. H. M. van Loosdrecht 
et al., Phys. Rev. B 38, 10162 (1988). 

Figure 103 illustrates the tunneling mechanism for the periodic mag- 
netoresistance oscillations as it was originally proposed292 to explain the 
observations. Because of the presence of a barrier in the point contact, the 
electrostatic potential has a saddle form. Equipotentials at the guiding center 
energy (18.1) are drawn schematically in Fig. 103 (arrows indicate the 
direction of motion along the equipotential). An electron that enters the 
constriction at a can be reflected back into the broad region by tunneling to 
the opposite edge, either at the potential step at the entrance of the 
constriction (from a to b) or at its exit (from d to c). These two tunneling paths 
acquire an Aharonov-Bohm phase difference499 of eBS/h (were S is the 
enclosed area abcd), leading to periodic magnetoresistance oscillations. (Note 
that the periodicity AB may differ438*500 somewhat from the usual expression 
AB = h/eS, since S itself is B-dependent due to the B-dependence of the 
guiding center energy.) This mechanism shows how an Aharonov-Bohm 
effect is possible in principle in a singly connected geometry: The point 
contact behaves as if it were multiply connected, by virtue of the spatial 
separation of edge channels moving in opposite directions. (Related mechan- 
isms, based on circulating edge currents, have been considered for 
Aharonov-Bohm effects in small ~ o n d ~ ~ t o r s . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ )  The oscillations 

499J. K. Jain and S. Kivelson, Phys. Rev. B 37, 4111 (1988). 
'OoB. J. van Wees, L. P. Kouwenhoven, C. J. P. M. Harmans, J. G. Williamson, C. E. T. 

Timmering, M. E. I. Broekaart, C. T. Foxon, and J. J. Harris, Phys. Reu. Lett. 62,2523 (1989). 
'O'E. N. Bogachek and G. A. Gogadze, Zh. Eksp. Teor. Fiz.  63,1839 (1972) [Sou. Phys. JETP36, 

973 (1973)l. 
502N. B. Brandt, D. V. Gitsu, A. A. Nikolaevna, and Ya. G. Ponomarev, Zh. Eksp. Teor. Fiz .  72, 

2332 (1977) [Sou. Phys. J E T P  45, 1226 (1977)l; N. B. Brandt, D. B. Gitsu, V. A. D o h a ,  and 
Ya. G. Ponomarev, Zh. Eksp. Teor. Fiz. 92,913 (1987) [Sou. Phys. JETP 65, 515 (198711. 

503Y. Isawa, SUJ$ Sci. 170, 38 (1986). 
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FIG. 104. Cavity (of 1.5pm diameter) defined by a double set of split gates A and B. For large 
negative gate voltages the 2DEG region under the narrow gap between gates A and B is fully 
depleted, while transmission remains possible over the potential barrier in the wider openings at 
the left and right of the cavity. Taken from B. J. van Wees et al., Phys. Rev. Lett. 62,2523 (1989). 

periodic in B are only observed at large magnetic fields (above about 1 T; the 
oscillations at lower fields are Shubnikov-De Haas oscillations periodic in 
1/B, due to the series resistance of the wide 2DEG regions). At low magnetic 
fields the spatial separation of edge channels responsible for the Aharanov- 
Bohm effect is not yet effective. The spatial separation can also be destroyed 
by a large negative gate voltage (top curve in Fig. 101), when the width of the 
point contact becomes so small that the wave functions of edge states at 
opposite edges overlap. 

Although the mechanism illustrated in Fig. 103 is attractive because it is 
an intrinsic consequence of the point contact geometry, the observed well- 
defined periodicity of the magnetoresistance oscillations requires that the 
potential induced by the split gate varies rapidly over a short distance (in 
order to have a well-defined area S ) .  A smooth saddle potential seems more 
realistic. Moreover, one would expect the periodicity to vary more strongly 
with gate voltage than the small 10% variation observed experimentally as V, 
is changed from - 1.4 to - 1.7 V. Glazman and J o n ~ o n ~ ~ '  have proposed 
that one of the two tunneling processes (from a to b in Fig. 103) is mediated 
by an impurity outside but close to the constriction. The combination of 
impurity and point contact introduces a well-defined area even for a smooth 
saddle potential, which moreover will not be strongly gate-voltage- 
dependent. Such an impurity-assisted Aharonov-Bohm effect in a quantum 
point contact has been reported by Wharam et aL504 In order to study the 
Aharonov-Bohm effect due to interedge channel tunneling under more 
controlled conditions, a double-point contact device is required, as discussed 
below. 

(2) Cavity. Van Wees et ~ 1 . ~ ' ~  performed magnetoresistance experiments in 
a geometry shown schematically in Fig. 104. A cavity with two opposite point 

504D. A. Wharam, M. Pepper, R. Newbury, H. Ahmed, D. G. Hasko, D. C. Peacock, J. E. F. 
Frost, D. A. Ritchie, and G. A. C. Jones, J .  Phys. Condens. Matter 1, 3369 (1989). 
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FIG. 105. Magnetoconductance experiments on the device of Fig. 104 at 6 mK, for a fixed gate 
voltage of -0.35V. (a) Conductance of point contact A, measured with gate B grounded. (b) 
Conductance of point contact B (gate A grounded). (c) Measured conductance of the entire 
cavity. (d) Calculated conductance of the cavity, obtained from Eqs. (21.1) and (21.2) with the 
measured G ,  and G ,  as input. Taken from B. J. van Wees et a!., Phys. Reo. Lett. 62,2523 (1989). 

contact openings is defined in the 2DEG by split gates. The diameter of the 
cavity is approximately 1.5pm. The conductances G, and G, of the two point 
contacts A and B can be measured independently (by grounding one set of 
gates), with the results plotted in Fig. 105a, b (for V,  = -0.35 V on either gate 
A or B). The conductance G ,  of the cavity (for V,  = -0.35 V on both the split 
gates) is plotted in Fig. 10%. A long series of periodic oscillations is observed 
between two quantum Hall plateaux. Similar series of oscillations (but with a 
different periodicity) have been observed between other quantum Hall 
plateaux. The oscillations are suppressed on the plateaux themselves. The 
amplitude of the oscillations is comparable to that observed in the experi- 
ment on a single point contactz9' (discussed before), but the period is much 
smaller (consistent with a larger effective area in the double-point contact 
device), and no splitting of the peaks is observed (presumably due to a fully 
resolved spin degeneracy). No gross k B asymmetries were found in the 
present experiment, although an accurate test of the symmetry on field 
reversal was not possible because of difficulties with the reproducibility. The 
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FIG. 106. Illustration of mechanisms leading to Aharonov-Bohm oscillations in singly 
connected geometries. (a) Cavity containing a circulating edge state. Tunneling through the left 
and right barriers (as indicated by dashed lines) occurs with transmission probabilities TA and Ts. 
On increasing the magnetic field, resonant tunneling through the cavity occurs periodically each 
time the flux @ enclosed by the circulating edge state increases by one flux quantum h/e. (b) A 
circulating edge state bound on a local potential maximum causes resonant backscattering, 
rather than resonant transmission. 

oscillations are quite fragile, disappearing when the temperature is raised 
above 200 mK or when the voltage across the device exceeds 40 pV (the data 
in Fig. 105 were taken at 6mK and 6pV). The experimental data are well 
described by resonant transmission through a circulating edge state in the 
cavity,500 as illustrated in Fig. 106a and described in detail later. Aharonov- 
Bohm oscillations due to resonant transmission through a similar structure 
have been reported by Brown et al.s05 and analyzed theoretically by 
Yosephin and K a ~ e h . ~ ~ ~  

(3) Resonant Transmission and Reflection of Edge Channels. The electrosta- 
tic potential in a point contact has a saddle shape (cf. Fig. 103), due to the 
combination of the lateral confinement and the potential barrier. The height 
of the barrier can be adjusted by means of the gate voltage. An edge state with 
a guiding center energy below the barrier height is a bound state in the cavity 
formed by two opposite point contacts, as is illustrated in Fig. 106a. 

'''R. J. Brown, C. G. Smith, M. Pepper, M. J. Kelly, R. Newbury, H. Ahmed, D. G. Hasko, J. E. 
F. Frost, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J .  Phys. Condens. Matter 1,6291 
(1989). 

'06Y. Yosephin and M. Kaveh, J. Phys. Condens. Matter 1, 10207 (1989). 
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Tunneling of edge channels through the cavity via this bound state occurs - - - 
with transmission probability TAB, which for a single edge channel is given 

t ~ t ~  Ij = TA TB 
1 - r ~ r ~  eXp(i@C?/h) 1 + RARB - ~ ( R A R B ) ~ ’ ~  COS(40 + @f?/h) ‘ TAB = 

(21.1) 

Here t A  and r A  are the transmission and reflection probability amplitudes 
through point contact A, TA = JtA12, and R, = lrA12 = 1 - TA are the trans- 
mission and reflection probabilities, and t,, rB, TB, RB denote the correspond- 
ing quantities for point contact B. In Eq. (21.1) the phase acquired by the 
electron on one revolution around the cavity is the sum of the phase 4o from 
the reflection probability amplitudes (which can be assumed to be only 
weakly B-dependent) and of the Aharonov-Bohm phase @ = BS, which 
varies rapidly with B (@ is the flux through the area S enclosed by the 
equipotential along which the circulating edge state is extended). Resonant 
transmission occurs periodically with B, whenever 4o + @e/h is a multiple of 
2n. In the weak coupling limit (TA, TB << l), Eq. (21.1) is equivalent to the 
Breit-Wigner resonant tunneling formula (17.1). This equivalence has been 
discussed by Buttiker,386 who has also pointed out that the Breit-Wigner 
formula is more generally applicable to the case that several edge channels 
tunnel through the cavity via the same bound state. 

In the case that only a single (spin-split) edge channel is occupied in the 
2DEG, the conductance G, = (e2/h)TAB of the cavity follows directly from Eq. 
(2 1.1). The transmission and reflection probabilities can be determined 
independently from the individual point contact conductances GA = (eZ/h)T, 
(and similarly for GB), at least if one may assume that the presence of the 
cavity has no effect on T A  and TB itself (but only on the total transmission 
probability TAB). If N > 1 spin-split edge channels are occupied and the 
N - 1 lowest-index edge channels are fully transmitted, one can write 

e2 e2 e2 

‘- h h h 
G - - ( N  - 1 + TAB), G A  = - ( N  - 1 + TA), G B  = - ( N  - 1 + TB). 

(21.2) 

Van Wees et dSo0 have compared this simple model with their experimental 
data, as shown in Fig. 105. The trace in Fig. 105d has been calculated from 
Eqs. (21.1) and (21.2) by using the individual point contact conductances in 
Fig. 105a, b as input for TA and TB. The flux @ has been adjusted to the 
experimental periodicity of 3mT, and the phase 4o in Eq. (21.1) has been 
ignored (since that would only amount to a phase shift of the oscillations). 
Energy averaging due to the finite temperature and voltage has been taken 
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into account in the calculation. The agreement with experimental trace (Fig. 
105c) is quite satisfactory. 

Resonant reflection of an edge channel can occur in addition to the 
resonant transmission already considered. Aharonov-Bohm oscillations due 
to interference of the reflections at the entrance and exit of a point contact, 
illustrated in Fig. 103, are one example of resonant refle~tion.”~ Jain4” has 
considered resonant reflection via a localized state circulating around a 
potential maximum, as in Fig. 106b. Such a maximum may result naturally 
from a repulsive scatterer or artificially in a ring geometry (cf. Fig. 100). 
Tunneling of an edge state at each of the channel boundaries through the 
localized state occurs with probabilities T A  and TB. The reflection probability 
of the edge channel is still given by TAB in Eq. (20.1), but the channel 
conductance Gc is now a decreasing function of TAB,  according to 

e2 
h 

Gc = - ( N  - TAB). (21.3) 

Quasi-periodic magnetoresistance oscillations have been observed in narrow 
channels by several g r o ~ p s . ~ ~ * ~ ~ ~ , ~ ~ ~  These may occur by resonant reflection 
via one or more localized states in the channel, as in Fig. 106b. 

22. MAGNETICALLY INDUCED BAND STRUCTURE 

The one-dimensional nature of edge channel transport has recently been 
exploited in an innovative way by Kouwenhoven et ~ l . ” ~  to realize a one- 
dimensional superlattice exhibiting band structure in strong magnetic fields. 
The one-dimensionality results because only the highest-index edge channel 
(with the smallest guiding center energy) has an appreciable backscattering 
probability. The N - 1 lower-index edge channels propagate adiabatically, 
with approximately unit transmission probability. One-dimensionality in 
zero magnetic fields cannot be achieved with present techniques. That is one 
important reason why the zero-field superlattice experiments described in 
Section 11 could not provide conclusive evidence for a bandstructure effect. 
The work by Kouwenhoven et ~ 1 . ~ ~ ’  is reviewed in Section 22.a. The 
magnetically induced band structure differs in an interesting way from the 
zero-field band structure familiar from solid-state textbooks, as we show in 
Section 22.b. 

a. Mugnetotransport through u One-Dimensional Superlattice 

The device studied by Kouwenhoven et ~ 1 . ~ ~ ’  is shown in the inset of Fig. 
107. A narrow channel is defined in the 2DEG of a GaAs-AlGaAs 

507R. Mottahedeh, M. Pepper, R. Newbury, J. A. A. J. Perenboom, and K.-F. Berggren, Solid 
State Comm. 72, 1065 (1989). 
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FIG. 107. Inset: Corrugated gate used to define a narrow channel with a one-dimensional 
periodic potential (the total number of barriers is 16, corresponding to 15 unit cells). Plotted is 
the conductance in a magnetic field of 2 T  as a function of the voltage on the smooth gate at 
10mK. The deep conductance minima (marked by + and *) are attributed to minigaps, and the 
15 enclosed maxima to discrete states in the miniband. Taken from L. P. Kouwenhoven et al., 
Phys. Rev. Left .  65, 361 (1990). 

heterostructure by two opposite gates. One of the gates is corrugated with 
period Q = 200nm, to introduce a periodic modulation of the confining 
potential. At large negative gate voltages the channel consists of 15 cavities 
[as in Section 2l.b(2)] coupled in series. The conductance of the channel was 
measured at 10 mK in a fixed magnetic field of 2 T, as a function of the voltage 
on the gate that defines the smooth channel boundary. The results, repro- 
duced in Fig. 107, show two pronounced conductance dips (of magnitude 
0. le2/h), with 15 oscillations in between of considerably smaller amplitude. 
The two deep and widely spaced dips are attributed to minigaps, the more 
rapid oscillations to discrete states in the miniband. 

This interpretation is supported in Ref. 250 by a calculation of the 
transmission probability amplitude t ,  through n cavities in series, given by 
the recursion formula 

it ,- 1 

1 - rr, - exp(i4) ' 
t ,  = (22.1) 

Here t and r are transmission and reflection probability amplitudes of the 
barrier separating two cavities (all cavitities are assumed to be identical), and 
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FIG 108. Top. Calculated transmission probability TN of an edge channel through a periodic 
potential of N = 15 periods as a function of the Aharonov-Bohm phase eBS/h (with S the area of 
one unit cell). The transmission probability through a single barrier is vaned as shown in the 
bottom panel Taken from L P Kouwenhoven et a l ,  Phys Reo Lerf. 65, 361 (1990) 

4 = eBS/h is the Aharonov-Bohm phase for a circulating edge state 
enclosing area S .  Equation (22.1) is a generalization of Eq. (21.1) for a single 
cavity. The dependence on of T, = It,,/’ shown in Fig. 108 is indeed 
qualitatively similar to the experiment. Deep minima in the transmission 
probability occur with periodicity A 4  = 271. Experimentally (where S is 
varied via the gate voltage at constant B) this would correspond to 
oscillations with periodicity AS = h/eB of Aharonov-Bohm oscillations in a 
single cavity. The 15 smaller oscillations between two deep minima have the 
periodicity of Aharonov-Bohm oscillations in the entire area covered by the 
15 cavities. The observation of such faster oscillations shows that phase 
coherence is maintained in the experiment throughout the channel and 
thereby provides conclusive evidence for band structure in a lateral 
superlattice. 

b. Magnetically Induced Band Structure 

(1) Skew Minibands. The band structure in the experiment of Kouwenhoven 
et ~ l . ’ ’ ~  is present only in the quantum Hall effect regime and can thus be said 
to be magnetically induced. The magnetic field breaks time-reversal symmetry. 
Let us see what consequences that has for the band structure. 

The hamiltonian in the Landau gauge A = (0, Bx, 0) is 

(22.2) 

where V is the periodically modulated confining potential. Bloch’s theorem is 
not affected by the presence of the magnetic field, since 2 remains periodic in 
y (in the Landau gauge). The eigenstates Y have the form 

(22.3) ynk(X, Y) = e‘kYf,k(X, Y), fnk(x, y + a) =fnk(x, Y), 
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If the wave number k is restricted to the first Brillouin zone Jkl < n/a, the 
index n labels both the subbands from the lateral confinement and the 
minibands from the periodic modulation. Since E and V are real, one finds by 
taking the complex conjugate of Eq. (22.4) that 

’ 

I where the functionf is a solution periodic in y of the eigenvalue problem 

508L. D. Landau and E. M. Lifshitz, “Statistical Physics,” Part 2, Section 55. Pergamon, Oxford, 
1980. 
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FIG. 109. Illustration of magnetically induced band structure in a narrow channel with a weak 
periodic modulation of the confining potential V(x) (for the case V ( x )  # V(  -x)). The dashed 
curves represent the unperturbed dispersion relation (22.7) for a single Landau level. Skew 
minibands result from the broken time-reversal symmetry in a magnetic field. 

It is instructive to consider the special case of a parabolic confining 
potential V,(x) = frnwix2 in more detail, for which the zeroth-order disper- 
sion relation can be obtained exactly (Section 10). Since the confinement is 
symmetric in x, the minigaps in this case occur at the Brillouin zone 
boundaries k = pn/a. Other gaps at points where the periodic modulation 
induces transitions between different 1D subbands are ignored for simplicity. 
From Eq. (10.5) one then finds that the Fermi energy lies in a minigap when 

E ,  = (n - f )hw + - ;; (F)2, (22.9) 

with the definitions w = (0," + w$'/', M = mw2/w;. In the limiting case 
B = 0, Eq. (22.9) reduces to the usual condition249 that Bragg reflection 
occurs when the longitudinal momentum muy is a multiple of hn/a. In the 
opposite limit of strong magnetic fields (w, >> w,), Eq. (22.9) becomes 

(22.10) 

The effective width We,, of the parabolic potential is the separation of the 
equipotentials at the guiding center energy EG = E, - (n - f)hw,. 

The two-terminal conductance of the periodically modulated channel 
drops by e2/h whenever E ,  lies in a minigap. If the magnetic field dependence 
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of We,, is small, then Eq. (22.10) shows that the magnetoconductance 
oscillations have approximately the periodicity AB - hlea We,, of the 
Aharonov-Bohm effect in a single unit cell, in agreement with the cal- 
culations of Kouwenhoven et ~ l . " ~  (Note that in their experiment the Fermi 
energy is tuned through the minigap by varying the gate voltage rather than 
the magnetic field.) The foregoing analysis is for a channel of infinite length. 
The interference of reflections at the entrance and exit of a finite superlattice 
of length L leads to transmission  resonance^^^^,^^^ whenever k = p x / L ,  as 
described by Eqs. (22.9) and (22.10) after substituting L for a. These 
transmission resonances are observed by Kouwenhoven et al. as rapid 
oscillations in the conductance. The number of conductance maxima between 
two deep minima from the minigap equals approximately the number L/a of 
unit cells in the superlattice. The number of maxima may become somewhat 
larger than L/a if one takes into account reflections at the transition from a 
narrow channel to a wide 2DEG. This might explain the observation in Ref. 
250 of 16, rather than 15, conductance maxima between two minigaps in one 
particular experiment on a 15-period superlattice. 

(2) Bloch Oscillations. In zero magnetic fields, an oscillatory current has 
been predicted to occur on application of a dc electric field to an electron gas 
in a periodic potentiaLSo9 This Bloch oscillation would result from Bragg 
reflection of electrons that, accelerated by the electric field, approach the 
band gap. A necessary condition is that the field be sufficiently weak that 
tunneling across the gap does not occur.510-513 Th e wave number increases 
in time according to k = eE/h in an electric field E. The time interval between 
two Bragg reflections is 2n/ak = h/eaE. The oscillatory current thus would 
have a frequency AVelh, with A V =  aE the electrostatic potential drop over 
one unit cell. Bloch oscillations have so far eluded experimental observation. 

The successful d e m ~ n s t r a t i o n ~ ~ '  of miniband formation in strong magne- 
tic fields naturally leads to the question of whether Bloch oscillations might 
be observable in such a system. This question would appear to us to have a 
negative answer. The reason is simple, and it illustrates another interesting 
difference of magnetically induced band structure. In the quantum Hall effect 
regime the electric field is perpendicular to the current, so no acceleration of 
the electrons occurs. Since k = 0, no Bloch oscillations should be expected. 

'O'F. Bloch, 2. Phys. 52, 555 (1928). 
'lOJ. N. Churchill and F. E. Holmstrom, Phys. Lett. 85A, 453 (1981). 
" ' 5 .  N. Churchill and F. E. Holmstrom, Am. J .  Phys.  50, 848 (1982). 
"'5. Zak, Phys. Rev. E 38, 6322 (1988). 
'I3J. B. Krieger and G. J. Iafrate, Phys. Rev. E 38, 6324 (1988). 




