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We consider the electrons to be non-interacting. Strict justification of
this comes from the Landau theory, in which an interacting electron gas
is re-described in terms of non-interacting quasi-particles with renormalised
energy (as compared to original particles) and a finite lifetime. Providing
this lifetime is long compared to any experimentally relevant processes, the
quasi-particle picture is a valid one, and this is generally the case in semi-
conductors. We may also appeal to a posteriori justification, as we will see
that this simple treatment is sufficient to describe a wide range of interesting
mesoscopic transport experiments.

3.3 Effects of confinement

In the triangular quantum well of Fig. 3.1, confinement in one spatial di-
mension is much stronger than in the other two. With z singled out as the
strongly confined dimension, we may therefore approximate the confinement
potential as U(r) = U(z)U(x, y). With magnetic field in the z direction, i.e.
perpendicular to the plane of the interface, the effective mass Schrödinger
Equation, Eq. (3.1), admits the separable solution Ψ(r) = φn(z)ψ(x, y),
with φn(z) the nth quantised solution of the one-dimensional problem in
the z direction. Index n = 1, 2, . . . defines a set of sub-bands; if we consider
the electrons to be unconfined in the plane of the interface, then the full
eigenfunctions of Eq. (3.1) with U(r) = U(z) are

Ψ(r) = φn(z)eikxxeikyy (3.2)

with dispersion

E(n, k) = Ec + ǫn +
~

2

2m∗


k2

x + k2
y

�
(3.3)

with ǫn, the eigen-energies from z-confinement.

The density of states (per unit energy, per unit surface area) of such a
quasi-infinite two-dimensional system is

D(E) =
X

n

m∗

π~2
θ (E − ǫn − Ec) =

X

n

D0θ (E − ǫn − Ec) , (3.4)

with θ (E) the unit step function and where a factor 2 for spin has been
included. Within the nth subband then, the density of states is constant,
with value nD0. For GaAs, with effective mass m∗ = 0.07me, D0 = 2.9 ×
1010/(cm.meV).
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Figure 3.3: Sketch of a 2DEG, establishing co-ordinate system. Strong
confinement is in the z direction, and much weaker parabolic confinement
in the y direction. The extent of the sample in the x-direction is large cf.
extent in y and z directions.

Confinement in the z direction is strong enough that experiments are
usually restricted to the lowest n = 1 sub-band. In both 2DEGs and SAQD
the z-confinement is ∼ 10 times that in the x-y plane. Thus, sub-bands
n ≥ 2 play no significant role and we can neglect the z direction altogether
— reducing the original 3D problem to a two-dimensional one with effective
2D Schrödinger equation

�
Es +

1

2m∗
(i~∇ + eA)2 + U(x, y)

�
ψ(x, y) = Eψ(x, y) (3.5)

with Es = Ec + ǫ1, and 2D vector operators.

3.4 Transverse modes in 2DEG

Consider a uniform 2D conductor, much longer than it is wide (Fig. 3.3).
We will consider transport parallel to the long axis of the conductor (x direc-
tion), assuming that the motion is essentially unconfined in this direction.
In the transverse (y) direction, we model the confinement with a harmonic
potential, such that we write

U(x, y) = U(y) =
1

2
m∗ω2

0y
2, (3.6)

with ω0 the confinement energy in the y direction. Harmonic confinement
is a convenient mathematical form as it leads to analytical solutions. It also
provides a reasonable approximations to confinements found in experiment.

We consider an applied magnetic field perpendicular to the 2DEG (in
the z direction), and choose a gauge such that the vector potential is written

A = −êxBy; Ax = −By; Ay = 0. (3.7)
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The 2D Schrödinger equation, Eq. (3.5), can then be written

�
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2m∗
(px + eBy)2 +
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2m∗
p2

y + U(y)

�
ψ(x, y) = Eψ(x, y), (3.8)

with px = −i~∂/∂x and py = −i~∂/∂y. This has solution

ψ(x, y) =
1√
L

eikxχ(y) (3.9)

with plane wave in x direction (normalised to length L) and the transverse
function χ(y) given by the solution of the 1D problem
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χ(y) = Eχ(y). (3.10)

Let us define the cyclotron frequency

ωc =
|eB|
m∗

, (3.11)

and the length

yk =
~k

eB
. (3.12)

We have then
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χ(y) = Eχ(y). (3.13)

Completing the square, we have
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χ(y) = Eχ(y),(3.14)

with

eω2 = ω2
c + ω2

0 (3.15)

This, then, has the form of a displaced Harmonic oscillator, and from ele-
mentary quantum mechanics, we have the solutions

χn,k(y) = un

�
q +

ω2
c

eω2
qk

�
, (3.16)
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Figure 3.4: Dispersion relation for a 2DEG with transverse harmonic con-
finement and perpendicular magnetic field. The three plots are for different
choices of ω0 and ωc, the confinement and cyclotron frequencies, respectively.

with un(x) the usual simple-harmonic oscillator eigenfunctions written in
terms of the dimensionless displacements q = y/el and qk = yk/el with length

el =

r
~

m∗eω . (3.17)

The corresponding dispersion relation is
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with n = 0, 1, 2, . . .. This result is illustrated in Fig. 3.4

The first thing to notice is that due to the confinement in the y-direction,
we obtain a series of sub-bands, labelled with quantum number n. In con-
trast to the z-direction, however, here the confining potential is relatively
weak, and more than just the lowest of sub-band will play a role in trans-
port. In analogy with optical wave guides, these sub bands are known as
transverse modes and they play a crucial role in determining the transport
properties of low-dimensional conductors. We also note that the dispersion
of a given transverse mode is of plane-wave form (i.e. quadratic) but with
a renormalised mass m∗ → m∗


1 + ω2

c/ω
2
0

�
— increasing the magnetic field
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increases this renormalised mass of the electrons and makes the dispersion
relation flatter. Figure 3.4 highlights two limiting cases:

• Zero field: For B → 0, we have ωc → 0 and eω → ω0 such that

E = Es +

�
n +

1

2

�
~ω0 +

~
2k2

2m∗
, (3.19)

as expected.

• Zero confinement For ω0 → 0, we have eω → ωc and

E = Es +

�
n +

1

2

�
~ωc, (3.20)

in which case, quantum number n therefore the familiar Landau levels
with quantisation energy given by the cyclotron frequency. NB: there
is no dispersion in this limit.

3.5 Quantum dots: Fock-Darwin Spectrum

A useful model for the electronic confinement of a quantum dot is the two-
dimensional, symmetric parabolic potential

U(x, y) =
m∗

2
ω2

0


x2 + y2

�
. (3.21)

The corresponding Hamiltonian of an electron in the dot is

H =
1

2m∗
(p + eA)2 +

m∗

2
ω2

0


x2 + y2

�
. (3.22)

By using the symmetric gauge for the vector potential A = (−By/2, Bx/2, 0)
it can be shown (homework!) that the energy spectrum the dot is given by

En+,n−
= (n+ + 1) ~Ω +

1

2
~ωcn−, (3.23)

with

Ω2 = ω2
0 +

ω2
c

4
, (3.24)

and quantum numbers

n± = nx ± ny; for nx, ny = 0, 1, 2, . . . . (3.25)
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Figure 3.5: Fock-Darwin spectrum of symmetric quantum dot up to quan-
tum number n = 7.

This result is known as the Fock-Darwin spectrum after the physicists who
initially discussed the problem in the 1930s (nothing to do with quantum
dots). This spectrum is plotted in Fig. 3.5. For B = 0 we have the regularly-
spaced spectrum of a two-dimensional symmetric harmonic oscillator. In the
high-field limit, the spectrum goes over into that of the Landau levels with
the effects of the dot confinement playing an ever decreasing role.


