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We consider the electrons to be non-interacting. Strict justification of
this comes from the Landau theory, in which an interacting electron gas
is re-described in terms of non-interacting quasi-particles with renormalised
energy (as compared to original particles) and a finite lifetime. Providing
this lifetime is long compared to any experimentally relevant processes, the
quasi-particle picture is a valid one, and this is generally the case in semi-
conductors. We may also appeal to a posteriori justification, as we will see
that this simple treatment is sufficient to describe a wide range of interesting
mesoscopic transport experiments.

3.3 Effects of confinement

In the triangular quantum well of Fig. 3.1, confinement in one spatial di-
mension is much stronger than in the other two. With z singled out as the
strongly confined dimension, we may therefore approximate the confinement
potential as U(r) = U(z)U(x,y). With magnetic field in the z direction, i.e.
perpendicular to the plane of the interface, the effective mass Schrodinger
Equation, Eq. (3.1), admits the separable solution ¥(r) = ¢,(2)¥(z,y),
with ¢,(z) the nth quantised solution of the one-dimensional problem in
the z direction. Index n = 1,2,... defines a set of sub-bands; if we consider
the electrons to be unconfined in the plane of the interface, then the full
eigenfunctions of Eq. (3.1) with U(r) = U(z) are

U(r) = ¢ (2)eFaTethvy (3.2)
with dispersion
h2
E(n,k) = E.+ €, + — (k2 + k) (3.3)
Am* Yy

with ¢, the eigen-energies from z-confinement.
The density of states (per unit energy, per unit surface area) of such a
quasi-infinite two-dimensional system is

D(E) = Zﬂm—f;Q(E—en—Ec) => Db (E— €, — E) (3.4)

with 6 (F) the unit step function and where a factor 2 for spin has been
included. Within the nth subband then, the density of states is constant,
with value nDy. For GaAs, with effective mass m* = 0.07m., Dy = 2.9 X
1019/(cm.meV).
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Figure 3.3: Sketch of a 2DEG, establishing co-ordinate system. Strong
confinement is in the z direction, and much weaker parabolic confinement
in the y direction. The extent of the sample in the z-direction is large cf.
extent in y and z directions.

Confinement in the z direction is strong enough that experiments are
usually restricted to the lowest n = 1 sub-band. In both 2DEGs and SAQD
the z-confinement is ~ 10 times that in the z-y plane. Thus, sub-bands
n > 2 play no significant role and we can neglect the z direction altogether
— reducing the original 3D problem to a two-dimensional one with effective
2D Schrodinger equation

Byt 5 GhV + AP +U(,0)| 6ley) = Béey)  (35)

with Es = E. + €1, and 2D vector operators.

3.4 Transverse modes in 2DEG

Consider a uniform 2D conductor, much longer than it is wide (Fig. 3.3).
We will consider transport parallel to the long axis of the conductor (z direc-
tion), assuming that the motion is essentially unconfined in this direction.
In the transverse (y) direction, we model the confinement with a harmonic
potential, such that we write

1,
Ulz,y) = Uly) = 5m woy?, (3.6)

with wg the confinement energy in the y direction. Harmonic confinement
is a convenient mathematical form as it leads to analytical solutions. It also
provides a reasonable approximations to confinements found in experiment.

We consider an applied magnetic field perpendicular to the 2DEG (in
the z direction), and choose a gauge such that the vector potential is written

A=-é,By; A,=-By; A, =0. (3.7)
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The 2D Schrodinger equation, Eq. (3.5), can then be written

L2 U | d(@.y) = Boy),  (38)

1 2
" (pz +eBy)” + o

E -
S+2m

with p, = —ihd/0x and p, = —ihd/0y. This has solution

wm—%ww> (3.9)

with plane wave in z direction (normalised to length L) and the transverse
function x(y) given by the solution of the 1D problem

E,+ ﬁpj t+ 5 (k +eBy)* + %m*wng x(y) = Ex(y).  (3.10)
Let us define the cyclotron frequency
we = |an*‘, (3.11)
and the length
Yk = f—g- (3.12)

We have then

1 L, L,
[ES gy oW (v + uk)” + 3" w%zf] x(y) = Ex(y).  (3.13)

Completing the square, we have

m* wiw? Loy 1 w? \?
Es+ 5 =5 Ykt 5 =Py 5m @ (v =gue ) | x(y) = Ex(y),(3.14)
with
wQ _ wg + w(2) (315)

This, then, has the form of a displaced Harmonic oscillator, and from ele-
mentary quantum mechanics, we have the solutions

2
w
Xnk(Y) = Un <q + (:)—;(Ik> , (3.16)
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Figure 3.4: Dispersion relation for a 2DEG with transverse harmonic con-
finement and perpendicular magnetic field. The three plots are for different
choices of wg and w,, the confinement and cyclotron frequencies, respectively.

with u,(z) the usual simple-harmonic oscillator eigenfunctions written in
terms of the dimensionless displacements ¢ = y/l and g = yi/l with length

[y (3.17)

m*w

The corresponding dispersion relation is

* 2.2
_ m* wiw? o 1y, -
E = E,+ 5 &QCyk+<n+§>7m
Rk wi

2 5 (3.18)

= B+ <n + %) hw +

with n = 0,1,2,.... This result is illustrated in Fig. 3.4
The first thing to notice is that due to the confinement in the y-direction,
we obtain a series of sub-bands, labelled with quantum number n. In con-
trast to the z-direction, however, here the confining potential is relatively
weak, and more than just the lowest of sub-band will play a role in trans-
port. In analogy with optical wave guides, these sub bands are known as
transverse modes and they play a crucial role in determining the transport
properties of low-dimensional conductors. We also note that the dispersion
of a given transverse mode is of plane-wave form (i.e. quadratic) but with
a renormalised mass m* — m* (1 + w? /w%) — increasing the magnetic field
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increases this renormalised mass of the electrons and makes the dispersion
relation flatter. Figure 3.4 highlights two limiting cases:

e Zero field: For B — 0, we have w. — 0 and @ — wq such that

1 h2k?
E = FE, — ) hwo + ——, 1
+<n+2> o+ Y (3.19)

as expected.

e Zero confinement For wg — 0, we have 0 — w, and

1
E = E,+ <n + 5) hwe, (3.20)
in which case, quantum number n therefore the familiar Landau levels
with quantisation energy given by the cyclotron frequency. NB: there
is no dispersion in this limit.

3.5 Quantum dots: Fock-Darwin Spectrum

A useful model for the electronic confinement of a quantum dot is the two-
dimensional, symmetric parabolic potential
m*
U(x,y) = —
(z,y) = =

wp (2% +97) . (3.21)
The corresponding Hamiltonian of an electron in the dot is

*

H =

(p+eA)” + = wh (22 + %) . (3.22)

2m* 2

By using the symmetric gauge for the vector potential A = (—By/2, Bx/2,0)
it can be shown (homework!) that the energy spectrum the dot is given by

1
By o= (ny+1)RQ+ 3 hwen -, (3.23)
with
w2
and quantum numbers

N4 =ng £ny; for ng,n, =0,1,2,.... (3.25)
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Figure 3.5: Fock-Darwin spectrum of symmetric quantum dot up to quan-
tum number n = 7.

This result is known as the Fock-Darwin spectrum after the physicists who
initially discussed the problem in the 1930s (nothing to do with quantum
dots). This spectrum is plotted in Fig. 3.5. For B = 0 we have the regularly-
spaced spectrum of a two-dimensional symmetric harmonic oscillator. In the
high-field limit, the spectrum goes over into that of the Landau levels with
the effects of the dot confinement playing an ever decreasing role.



