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FIGURE 5.20. Density of states for a superlattice (thick line) and a multiquantum well (thin

line) scaled to the same value in the plateau, m/mwah?. The two lowest bands have widths W
and W».

multiquantum well into a superlattice, broadens the sharp step in the density of states
into an arcsine of width . The bottom of each subband has a parabolic density
of states, the general result for a three-dimensional system, but the superlattice is
anisotropic. The effective mass for motion perpendicular to the direction of growth,
m in the preceding formulas, is that for freely propagating electrons in the host,
while that for motion along the superlattice depends on .

5.7 Coherent Transport with
Many Channels

The one-dimensional systems studied earlier in this chapter were purely one-dimen-
sional in the sense that only one subband was occupied. Such systems are analogous
to electromagnetic wave guides in which only one mode can propagate. Further
subbands become occupied if the Fermi level of a quasi-one-dimensional system
is raised, just as further modes can propagate in a wave guide as the frequency of
operation is raised. In this section we shall first extend the theory of conduction to
describe a scattering centre or ‘sample’ between two such quasi-one-dimensional
systems or ‘leads’. An example is a narrow constriction between two wider leads,
which shows a quantized conductance. This is more complicated to describe than a
purely one-dimensional system because reflection and transmission can now occur
between different subbands or modes. The next step is to study samples that have
more than two leads attached to them. The sample can now be a much more general
object, and the most significant application will be to the quantum Hall effect in a
sample with many leads. The theory remains restricted to coherent transport, so in
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FIGURE 5.21. Coherent transport through a system with two leads, each with many propagating
states.

practice the sample must be small enough that inelastic scattering is unlikely, and
we shall treat only linear response and low temperature.

5.7.1 TWO LEADS WITH MANY CHANNELS: THE
QUANTIZED CONDUCTANCE

The first extension beyond a strictly one-dimensional system is shownin Figure 5.21.
There are two leads with a scattering centre between them, as in earlier sections, but
each lead now has several subbands arising from the transverse states (Section 4.8).
These subbands are also called modes or channels. It is essential that the transverse
potential of each lead remains constant along its length, although its precise form is
unimportant. This is part of the definition of a perfect lead, and any regions where
the potential changes must be included as part of the scattering centre. The wave
function within a lead takes the form

¥(R) = Z v 2[4, exp(iknz) + By exp(—ikyz)lu,(r). (5.94)

This generalizes equation (5.1). Transverse states are labelled by » (which should
really be two labels), with wave functions u, (r) and energies ¢,. The total energy
E = g, + h*k2/2m, so states propagate if E > &, and decay otherwise. The factor
with the velocity v, of each mode normalizes the states by flux rather than density
as in equation (5.48). The two leads are not in general identical, so the energies of
the one-dimensional subbands are different and so are the number of propagating
states in each, Nier and Mg

Inject a wave from the left purely in mode m. The scattering centre mixes the
different modes so the scattered wave has contributions from all outgoing modes
on both sides. The wave functions in the left and right leads take the form

Ve (R) = [P 17240 (r) exp(ikY 2)

o0
+ Y w1 (r) exp(—ik{2),

n=|1

Vg (R) = D[0P 1, ul (r) exp(ikz). (5.95)

n=1
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The sums run over all values of n, not just the propagating states; the decaying states
are essential to complete the wave function. There are now arrays of reflection
and transmission coefficients rather than the simple numbers in the strictly one-
dimensional case.

The S- and T-matrices defined in Section 5.2 can be extended to many modes.
They are essential for detailed calculations but contain much information that may
not be needed afterwards. A simpler matrix t can be constructed from the coefficients
thm in equation (5.95), giving the transmission amplitude for an electron incident
from the left in mode m to be transmitted on the right in mode n. We restrict t to
propagating states, giving dimensions of Nyght X MNief:.

One reason for using t is that it contains sufficient information to find the con-
ductance. The derivation follows equation (5.58), which gave G = (2¢*/h)T =
(2e2/ h)|t|? for one dimension. Consider electrons injected in a given mode m. Those
that emerge in mode » make a contribution (2e?/4)|t,m|* to the conductance. The
velocity of different modes is taken into account by the normalization and does not
clutter this result. The total conductance is found by summing over all input and
output modes:

2e?
= Z [tum 12 (5.96)

A vital feature is that the sum is over intensities rather than amplitudes: it is assumed
that there is no phase coherence between electrons injected in different modes, so that
we can simply add the contributions to the current and not worry about interference
between them. Itis also implicit that each mode has the same Fermi level, yet another
demand on the leads. The conductance can be written in a more compact form by
using the Hermitian-conjugate matrix of t, defined by tNw = (tum)*. Then

2e? 2¢?
G = T tnmt:m = T Z(t)nm (tT)mn
2¢? 2¢? 2¢?
= = Yo, = —-Trth = T 'y, (597)

This is the form in which the result is usually quoted, where ‘Tr’ is the trace of
the matrix (the sum of its diagonal elements). Note that the product tt' is square,
although neither t nor t' need be, and that the two expressions for the trace are
equal, although tt" and t't may not be the same size.

This result can be used to calculate the conductance of a short wire or constriction,
the quantum point contact. A typical structure is illustrated in Figure 5.22(a). Two
gates shaped like opposed fingers on the surface of a heterostructure are negatively
biassed to deplete the 2DEG underneath them. The remaining electrons are forced
to travel through the gap between the gates, which behaves like a short quasi-one-
dimensional system. The broad regions of 2DEG on either side act as the ‘leads’.
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FIGURE 5.22. (a) Layout of a typical quantum point contact, a short constriction defined by
patterned metal gates on the surface of a heterostructure containing a 2DEG. (b) Calculated con-
ductance G (V;) as a function of gate voltage V. [From Nixon, Davies, and Baranger (1991).]

If the gates are short, the potential underneath them looks like the saddle shown
in Figure 5.23(a). Because the potential varies so smoothly, it is possible to use the
adiabatic approximation. The idea is to write the wave function of each mode in
the separable form

Gn R) & 1, (1; 2) [0, (2)] 7 {4,(2) explika (2)z] + B, (2) expl—ik,(z)z]}.
(5.98)

The wave function and energy in the transverse potential at z, u,(r; z) and ¢,(z),
are calculated as though this potential were constant along the wire. The wave
number follows from £ = ¢,(z) + hzk,f(z) /2m. A mode may be propagating in one
region and decaying in another. This approximation is related to the WKB method
(Section 7.4) and is applicable only if the transverse potential changes slowly along
z. It may also be possible to neglect scattering from one mode to another, in which
case the amplitudes 4,(z) and B,(z) may be calculated independently for each
mode. The matrix t then becomes diagonal.

The energy €,(z) of each subband varies with longitudinal position z through
the constriction, rising to a broad peak in the middle (Figure 5.23(b)). Many states
propagate while they are far from the constriction, but their wave number becomes
imaginary as they approach the saddle point and see an apparent barrier when
&n(2) > E. Such an electron (modes 2 and 3 in Figure 5.23(b)) may tunnel through
the barrier but most of the amplitude is reflected unless the apparent barrier is low.
Only electrons in the lowest N,,s modes propagate throughout the constriction
(mode 1 in Figure 5.23(b)). Thus t has diagonal entries of nearly unity for the lowest
Nigans modes, which are transmitted, and small values for the others. Equation (5.97)
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FIGURE 5.23. (a)Contours of a smooth saddle-point potential used to demonstrate the quantized
conductance. The thicker line shows where the Fermi level meets the potential energy and the
shaded region has high potential energy. (b) Energies €, (z) of the transverse modes as a function
of their position z.

shows that the conductance is given by

2 2
G = 2iTr (') ~ ZiNms. (5.99)
h h

This is the quantized conductance. The value of Ny, can be changed by altering the
width and depth of the constriction, usually by varying the bias V; on the gates. Thus
a plot of G(¥,) should give a steplike curve, with G jumping by 2e%/ h whenever
another mode is allowed to propagate through the saddle point. An example is
shown in Figure 5.22; this is a simulation but some experiments are even better!
The rounding of the steps is due to tunnelling through the saddle point. Raising the

temperature has a similar effect.

Adiabatic propagation of electrons is not a necessary condition for the quantized
conductance. Scattering between modes will have no effect provided that only for-
ward scattering occurs so the direction of the electron is preserved (although the
magnitude of its velocity must change). Any backward scattering, on the other hand,
will be disastrous and the constriction must be kept short to avoid this, typically
below 1 um. Sharp features in the potential also produce structure in G(V;). This
sensitivity to the details of the potential means that the quantization of the conduc-
tance is not particularly accurate, and a result within 10% of (2e2/ %) Nyans is good.
This contrasts strongly with the quantum Hall effect, where the Hall conductance
takes the same value but in a good sample is in perfect agreement with the value of
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2e? / h deduced from other high-precision experiments. It will be explained with a
similar formalism in Section 6.6.

5.7.2 SYSTEMS WITH MANY LEADS

The next step is to allow for an arbitrary number of leads N.4s. The general form
of the geometry, with some specific applications, is shown in Figure 5.24. Typically
some leads are used to inject currents, whereas others measure voltages, and the
leads are often called current or voltage probes. It is assumed that voltage probes
are connected to ideal voltmeters, which draw no current. Case (c) is important as
it is commonly used in practice to measure resistance. A current is passed along the
straight path and the resulting voltage is measured between the two side arms. This
four-probe configuration is preferred because it is insensitive to the resistance of the
contacts. Alternatively the voltage can be measured between the two contacts used
to pass the current, giving a ftwo-probe measurement. We shall see that the results
can be startlingly different.

Although S-matrices are needed for detailed analysis, we shall continue with the
t-matrix defined in the previous section. Use m and n to label the leads and « and 8
to label the propagating modes within each lead; N,, modes propagate inlead m. As
usual the leads must have constant cross-section, and states should be normalized
to constant flux. An inward-flowing current in a lead is defined to be positive.

Consider a particular lead and mode, {m, «), say. We are interested only in de-
viations from equilibrium so the excess current that impinges on the sample from
this lead is given, as in Section 5.4.1, by I'™ = (—2e/ h)8 . The change in Fermi
energy 84, = —eV,,, where ¥, is the applied voltage, so /" = (2¢%/h)V,,. This
is the same for all N,, modes in this lead.

(a)

lead m
D -
Im

FIGURE 5.24. Geometry of a sample for coherent transport with many leads. The general case is
shown in (a) with specific examples of (b) a T-junction, (c) four-terminal measurement of longitu-
dinal resistance, and (d) a microscopic Hall bar.
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Of the electrons incident from this mode and lead, those entering into mode g
of lead n have amplitude f,g ne. This contributes a curtent —I"|t,5 1,4|*, which is
negative because it flows outwards. Some electrons are reflected back down lead
m, not necessarily in their original mode, with reflection amplitudes #,,g, 5. Since
Ing.me 18 defined only for n # m and r,g o €xists only for n = m, one often defines
tmp,ma = Ymp,ma-

The total current in lead n due to electrons injected from a different lead m is
given by summing over all modes in the two leads, as in equation (5.96). Thus

2¢2 O M )
Lim = ——Vy togmal® 5.100
p ;; 8.met| (5.100)

All expressions for currents involve sums such as this over the modes in both
leads. It is like the trace in equation (5.97), although there are now extra subscripts
on the transmission coefficients to label the leads. We can clarify the notation by
introducing still more transmission and reflection coefficients which absorb these
traces:

Nn Nn Ny N
Tom =Y ltngmal®s  Ru=2_> |rmpmal® (5.101)
p=1 a=1 oo

These coefficients can be greater than unity, unlike the simple coefficients in one-
dimensional systems. For example, T}, reaches the smaller of N,, and N,, for perfect
transmission. Again, one often sets T,,,, = R, to treat the transmission and reflec-
tion coefficients on an equal footing.

The net current injected into lead m is given by the incident current less the
reflected current. The total incident current, summed over all propagating modes,
is (2¢%/ h)N,, Vi, so the net current is

Inm = (2€*/ I)(Nw = Rn) V. (5.102)

Conservation of current requires that this be equal to the total current injected from

lead m that leaves the sample through other leads, that is, Lym = 3, ,, Jom- This
leads to a sum rule on the transmission coefficients,

Ru+ D Tom=Nn. (5.103)

n,n#m
This is an obvious generalization of R + T = 1.
We have now calculated the currents due to electrons injected from lead m. All
that remains is to sum the contributions from all leads. Lead n causes a current
—(2¢?/ h) T, Vy, in lead m, so the total current in lead m is

In =" | (N = R)Ves = D Tou¥r |- (5.104)

n,n#m
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This the Landauer—Biittiker formula for the conductance of a system with many
leads. It can also be written in terms of a square conductance matrix whose dimension
is given by the number of leads:

2 2
In=3Gum¥s  Gn ="V = Ra)on — Tl (5.105)

This matrix must be treated with some care. The condition (5.103) for current con-
servation means that each column » of G,,, sums to zero. This shows immediately
that the determinant vanishes and the matrix is singular. Another condition comes
from the requirement that no current should flow if all voltages are equal, which
means that

Z Gmn =0 =(N,, — R,,) — Z T (5.106)

n,n#m

Thus each row m of the conductance matrix must also sum to zero, The fact that
both the rows and columns sum to zero leads to the relation

Z Ty = Z Tom. (5.107)

These conditions can be used to rewrite the current, equation (5.104), in a number
of ways. Replacing (¥,, — R,,) using the condition (5.103) for current conservation
leads to

2¢?
In == 3 TanV = Tunr). (5.108)

n,n#m

The diagonal term T, is not needed. Replacing the same term using the ‘row’ sum
rule (5.106) gives

I—zeZZ(TV TV)—2eZZT(V ) (5.109)
m—h mn¥m mnn—T mn\"m n’- .

n.ntm n,n#m

This shows explicitly that only differences between applied voltages are significant.

Note that equation (5.107) does not imply that the conductance matrix must be
symmetric, except in the case of only two leads. However, time-reversal symme-
try makes the matrix symmetric in the absence of a magnetic field. This symme-
try is broken by a magnetic field, which is important in the analysis of the Hall
effect.

It is straightforward to verify that equation (5.104) agrees with our earlier results
for systems with two probes. The next most complicated case is a sample with
three leads, as in Figure 5.25(a). Let lead 3 be a voltage probe connected to an
ideal voltmeter, which draws no current, so /3 = 0. A current / flows into lead 2
and out of lead 1, so /; = —7 and I, = /. Finally, set ¥; = 0 as the reference
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FIGURE 5.25. A sample with three leads to illustrate the multiprobe formula. A current  flows
into lead 3 and out of lead 1; no current passes down lead 2, which is used purely to measure
voltage. The two figures on the right show the transmission coefficients in large positive and
negative magnetic fields when the device acts as a ‘circulator’.

voltage. Equation (5.108) becomes

2e?
h=-I= T[—leVz — T3Vs]

2e?
h=1= 7[(le + T)Vy — Th3Vs]

2e?
L=0= 7[—T32V2+(T13+T23)V3]- (5.110)

Adding the three equations gives zero on both sides, confirming that one is re-
dundant. Solution of these equations shows that the two-probe conductance of the
system between leads 1 and 2 1s

I 22 Tix T
_=_(le+—5—&). (5.111)
V, h T3+ T

There are two contributions to the conductance. The first is due to those electrons
that go directly from lead 1 to lead 2, as expected. The second is indirect and arises
from electrons that go from lead 1 into 3. This is a voltage probe and carries no net
current, so the flow must be balanced by an equal and opposite current that divides
between leads 1 and 2 in the ratio of their transmission coefficients. Another useful
result is the potential measured in lead 3:

£ T, Ts,

— = = ) (5.112)
Vo Tin+Ty Tau+Tyn

This closely resembles a potential divider. The second form of the denominator
follows from the rows-and-columns sum rule (5.107).

To check that these make sense, suppose that the leads each support only one
transverse mode and that the structure has threefold symmetry. In the absence of
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a magnetic field the transmission coefficients between different leads are identical.
The highest value of T, permitted by the usual conservation and symmetry laws is
% and in this case we find

I _22 (4 2\ 222 V|
99

% h =37 v, "2 (5.113)
The presence of the strongly coupled voltage probe, which reflects some of the
electrons despite drawing no net current, has reduced the conductance below its
value of 2¢*/ h for a perfect system with only two leads. The ratio ¥3/ V2 = 1 is just
what we would expect for a classical potential divider and follows from symmetry.

Now apply a large magnetic field. It is possible, as we shall see in Section 6.5,
to arrange that the electrons are all forced to go down the lead to their right. In
microwaves this would be a ‘circulator’. Then T, = T3 = T3 = 1, the others
vanish, and we get

I 2e? 2e? Vs

— =140 =", — =0. 5.114

Vs h 1+0 h V) ( )
Reversing the field gives 75 = T3 = T13 = 1 and

I 2e? 2e? V)

—=0+1)=", — =1. 5.115

7= 0+ 1) - 7 ( )

The behaviour of the voltage probe is quite different for the two directions of mag-
netic field, although the conductance measured between two probes is not affected
by the direction of the magnetic field (a general result for a two-probe measurement,
mentioned earlier).

An important feature is that the indirect and direct currents are not coherent
with each other, because the indirect current involves electrons that emerge from a
different lead (the voltage probe 3). This can provide a useful theoretical trick to
simulate lack of full coherence in tunnelling, which is very difficult to treat more
formally. One just couples an additional voltage probe to the sample where the
incoherence is supposed to originate. This picture can be verified by suppressing
direct transmission from 1 to 2 so that all current is forced to take the indirect path.
Then equation (5.111) becomes

I _262 T13T32

Lz It (5.116)
V) h T3+ 1o

The symmetry 7,3 = T3, reduces this to the classical formula for two resistors in
series, contact 3 acting as the joint between them.

Finally, assume that the coupling to lead 3 is very weak. This might be the case
in practice because we would like the voltage probe to disturb the system as little as
possible. Then the direct current dominates equation (5.111), which depends only
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FIGURE 5.26. Two- and four-terminal measurements of the resistance of a tunnelling barrier.
(a) Current is passed between probes 1 and 2; voltage can be measured either between these or
between the weakly coupled probes 3 and 4. (b) Definition of the transmission coefficients coupling
the voltage probes to the sample. (c) Derivation of the relation between the transmission coefficients
o and 8.

on T}, as we would hope. The voltage on probe 3, equation (5.112), unfortunately
depends strongly on the ratio T3 : T3, of the couplings to the two other leads. We
would expect V3 = %Vg for a perfect structure (in the absence of a magnetic field).
This requires the couplings to the two current leads to be equal, not very surprisingly.
Any imperfections that break this symmetry will affect V3.

Our final task is to derive a general formula for a four-probe resistance. The
configuration is shown in Figure 5.26(a). Let current / enter through probe 2 and
leave through probe 1; we wish to find the voltage between probes 4 and 3, which
draw no current. There is a general notation Ry, pg = Vpq/Imn for such quantities,
where V), is the potential difference that appears between contacts p and g in
response to a current between m and n. Thus we want the four-terminal resistance
R 43. The full set of equations (5.109) is

Tvo+ Tis+ T4 —Tiy —Ti3 —Tha

—Tn To1 4+ Tos + Tog —Tns —T

—1T13 —T13 T31 + T3y + T34 —T3

—Ty —Typ —Ty3 Ty + T+ Ta
" 5L —1I
v h I h

N R D R D (5.117)

Vs 2e2 | I 2e? 0
Va Iy 0

We know that one of these equations is redundant, so drop that for ;. We also know
that only differences of voltages are significant, so we can set one to zero; V3 is a
convenient choice as we want V3. We are then left with a 3 x 3 set of equations,

—T T+ T+ Ty —Th4 Vi !
—T31 _T32 —T34 Vz =—101}. (5118)
—T4 —~Ta Ton+Tao + Tz Vi
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This can be solved simply using Cramer’s rule or the like, since the matrix is now
well behaved. The result is
h TpTs — ITnTs

2¢? S ’
where S is the determinant of the 3 x 3 matrix in equation (5.118). A worry is that
eliminating different variables from the original 4 x 4 set might give different forms
of this result. Fortunately the numerator does not change, and the sum rule that
requires that the rows and columns all sum to zero means that any 3 x 3 submatrix
of the original matrix has the same determinant (although one has to watch the
sign!). Another useful result is the two-probe resistance, deduced from the voltage
between the current probes,

Rt 21 = 2_]1_2 (T31 + T3z + T34) (T + Tap + Tu3) — T34T43‘ (5.120)

e S

These results will be used in Section 6.6.1 to study the propagation of edge states
in the quantum Hall effect.

An interesting application, of great historical importance, is to compare the re-
sistance of a tunnelling barrier measured using two or four probes. The system is
shown in Figure 5.26(a), where the sample is the barrier in the middle with transmis-
sion coefficient T'. The voltage probes are assumed to be identical and very weakly
coupled to the structure to cause minimum disturbance. Assume for simplicity that
only one mode propagates through the structure.

We need the transmission coefficients, of which there are six assuming time-
reversal invariance. The largest is 712 = T; = T due to the barrier. All others
involve coupling to the voltage probes 3 and 4 and are small by assumption. The
transmission coefficients from voltage probe 3 to the other probes are shown in
Figure 5.26(b). Let T3, = « and T3, = B, which are both of order 8, say. The third
coefficient T34 = y will be of order 82, as it describes propagation through both of
the weakly transmitting voltage contacts. The coefficients for probe 4 are the same
but for reflection symmetry. The determinant of the matrix in equation (5.118) is

Rojaz = (5.119)

-7 T —
Sxdet|—a —-B —y |~T+pB)> (5.121)
-8B —a a+p

retaining only terms to lowest order. The two-probe resistance (equation 5.120)
becomes

o+ B)? — y? h 1 2e?
( '8; 4 ~ 2_63?, GZ-probe = —h—T. (5.122)

This is a familiar result. The four-probe resistance (equation 5.119) is

haz—ﬂZN h —B
22§ 22 a+ B

Roaym =~ L
2121 ¥ 5

) ! (5.123)

Ry a3 = —=.
' T
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As in the three-lead example, the voltage between the weakly coupled probes de-
pends on the ratio of their transmission coefficients in the two directions. Fig-
ure 5.26(c) shows how to determine this ratio. Current from probe 3 divides equally
in the two directions when it leaves the voltage probe, with transmission coefficients
8. One branch of this current flows into lead 1 without impediment but the other
branch encounters the barrier in the middle of the device. A fraction R is reflected
by this and only a fraction T passes through to reach probe 2; we can ignore the
small effect of probe 4, which it passes on the way. Thus ¢ = (1+ R)d and 8 = T'6.
This finally gives

h R 22T 23 T
22T’ dprobe = TR T R 1-T

This result is due to Landauer, and the difference between the two-probe and four-
probe results was long a source of controversy. There is little difference between
G 2-probe and Ga-probe for a weakly transmitting barrier but they disagree strongly
as the barrier becomes more transparent. In the limiting case of 7 = 1 we have
G 2-probe = 2¢2/ h but Ga-probe = 00. What is the source of the difference?

If there is no barrier at all and T = 1, it seems clear that the distribution of
electrons should be the same at all points within the wire and that a probe used to
measure the voltage should return the same value at any point, giving G4.probe = 0.
The difference with G.pobe is that the voltages reflect the Fermi levels of the
reservoirs, There must be a difference between these Fermi levels in order to drive
a current. The current that leaves a reservoir is proportional to the product of the
density of states at the Fermi level, the Fermi velocity, and the difference in Fermi
levels, and this product is finite. Thus a non-zero voltage must be applied simply to
generate the non-equilibrium distribution of electrons needed to pass a current, even
if that current is then transmitted perfectly to the other end of the sample. This extra
voltage appears to be due to an extra contact resistance of 4 /2e? in series with the
sample. It also reminds us that energy must be supplied to support conduction, even
through a perfect wire, but leaves open the question of how this energy is dissipated.

Ry a3 ~ (5.124)

5.8 Tunnelling in Heterostructures

We have assumed throughout the previous sections that the structures consist of
a single material with a superposed potential. This is not strictly applicable to a
heterostructure such as a barrier of AlGaAs surrounded by GaAs. In simple cases the
changes needed are very similar to those for quantum wells, discussed in Section 4.9.
For example, the wave function of a layered structure still separates into a transverse
plane wave and a longitudinal part that can be treated with 7-matrices, but the
energy no longer separates totally and the effective height of a barrier depends on
the transverse wave vector k, The matching conditions at a heterointerface must



