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These measurements have confirmed in a beautiful way the model of con-
tact resistances and ballistic transport in one-dimensional systems. There
is actually a quite different kind of experiment which proves this as well,
namely four-terminal resistance measurements on 2DEGs in the quantum Hall
regime. This is the topic of the following sections.

7.3
The Landauer–Büttiker formalism

In the previous section, we have argued that the quantized conductance of
ballistic quantum wires stems from contact resistances. We have also seen that
four-probe measurements give a resistance of zero, as expected from their in-
terpretation in terms of contact resistances. In fact, a conceptually very similar
system is a 2DEG in the quantum Hall regime. As already indicated in Sec-
tion 6.2, the electrons skip along the edge of the Hall bar in strong magnetic
fields. The origin of this dynamics is illustrated in Fig. 7.17.

Fig. 7.17 Modification of the magnetoelectric confinement of the elec-
trons as they approach the edge of the 2DEG (top left). The undis-
turbed cyclotron motion at y1 is increasingly squeezed as the guiding
center approaches the edge (positions y2 and y3). As a consequence,
the energy of the Landau level increases (right), while the electrons
delocalize along the x-direction (bottom).
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7.3.1
Edge states

At the edge of the 2DEG, the conduction band bottom increases sharply and
modifies the combined potential of the Landau harmonic oscillators and the
electrostatic confinement. The increased confinement shifts the Landau levels
to higher energies. Each LL crosses the Fermi level at some point, and con-
sequently the density of states at the Fermi level is always larger than zero.
As sketched in Fig. 7.17 as well, the electrons skip along the edge. There-
fore, we speak of skipping orbits and edge states. Edge states have several pe-
culiar features, which become self-evident immediately. First of all, they are
one-dimensional: the electron motion is confined perpendicular to the sample
edge, but is free in the direction parallel to it. Second, all the electrons at one
sample edge move in the same direction, while the electrons at the opposite
edge move in the opposite direction. In the bulk, all electrons are localized
at potential modulations, except for special filling factors, as already shown
in Section 6.2. The resulting edge state configuration with the directions of
current flow is shown in Fig. 7.18.6

Fig. 7.18 Top view of a Hall bar in a strong magnetic field. Current
flows in one-dimensional edge states only, in the directions indicated
by the arrows. Here, two Landau levels are occupied.

There is no backscattering in edge states, i.e. the elastic mean free path ap-
proaches infinity. Suppose an electron in an edge state hits a scatterer close to
the edge. Its momentum right after the scattering event may be reversed, but
the strong magnetic field bends the momentum back into the forward direc-
tion. In order to be backscattered, the electron has to traverse the whole Hall
bar and reach the opposite edge! Hence, backscattering is greatly reduced. It

6) Since the electrons circulate around the edge, one speaks of a chiral
Fermi liquid.
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follows that a 2DEG in the quantum Hall regime comes very close to an ideal
ballistic quantum wire: it is one-dimensional and backscattering is absent. We
can even attach voltage probes inside the quantum wires without inducing
backscattering. Therefore, the voltage drop between, for example, contacts 1
and 2 in Fig. 7.18 should be zero. You will have realized, of course, that this
is exactly what we measure in a Shubnikov–de Haas experiment. In [47], the
Landauer formula has been generalized to an arbitrary number of contacts,
such that circuits of ballistic quantum wires can be treated. The concept is
known as the Landauer–Büttiker formalism.

Consider a circuit of ballistic quantum wires, like, the system of Fig. 7.18.
We define the direct transmission probability of contact p into contact q as
Tq←p = Tqp. It is possible to have Tqp > 1, since more than one mode may
connect the two contacts. Note that Tqp does not have to be an integer. Note
further that, within this notation, Tpp is a backscattering probability. The total
current emitted by contact p is denoted by Ip, while µp is the electrochemical po-
tential of contact p. Again, an “ideal” contact absorbs all incoming electrons
and distributes the emitted electrons equally among all outgoing modes, such
that they are filled up to µp , assuming zero temperature.

In this notation, the Landauer formula generalizes to the Büttiker formula

Ip =
2e
h ∑

q
(Tqpµp − Tpqµq) (7.34)

which is a direct consequence of current conservation. We proceed by apply-
ing the Büttiker formula to the sample shown in Fig. 7.18. It gives a system of
six linearly dependent equations, one for each contact:
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with G = j(2e2/h). By choosing µd = 0 as a reference potential, and after
eliminating the drain current as a consequence of current conservation (re-
member that the voltage probes measure the potentials without drawing cur-
rent), we can eliminate the drain row and column, and the following matrix
equation results:
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Its solution gives

Vs = V3 = V4, V1 = V2 = 0, Is = GVs (7.35)

a result that you may have guessed, considering, for example, that probes 1
and 2 are resistanceless connected to drain. Therefore, we find the longitudi-
nal resistance

Rxx =
V1 −V2

Is
=

V3 −V4

Is
= 0 (7.36)

and the Hall resistance
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Within the edge state picture, the quantized Hall resistance is obtained, and
the longitudinal resistance vanishes. The accuracy of the quantization is so
much more accurate than in a QPC because backscattering is greatly sup-
pressed. Let us now consider what happens as we increase the magnetic field,
such that the uppermost occupied LL gets depleted. The corresponding edge
state, which is the innermost occupied one, is depopulated as well. Since the
velocity in the x-direction of the electrons in edge state j is given by
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(7.38)

where we have used y(kx) = h̄kx/eB, the velocity of the electrons approaches
zero as the edge state gets depleted. As a consequence, the edge state begins
to soften and the electron trajectories penetrate into the bulk. Finally, the elec-
trons can percolate all the way to the opposite edge, backscattering sets in,
and the conductance quantization vanishes.

Haug et al. [145] have performed an instructive experiment related to this
picture (see Fig. 7.19). A gate stripe extends across a Hall bar inside an area
that can be measured by four voltage probes. Biasing the gate tunes the elec-
tron density, and thus the number of occupied Landau levels, underneath. If
the filling factor under the gate is smaller than outside the gated area, edge
states get redirected at the gate. This changes the transmission probabilities in
Eq. (7.34).
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Fig. 7.19 Left: Sample geometry to control
backscattering between edge states. A top
gate covers the Hall bar in between four volt-
age probes. At suitable gate voltages, the in-
ner one of the two edge states gets reflected.
R ight: For a 2DEG in the regime of filling vec-
tor 2, with spin-split edge states, a plateau

at Rxx = h/2e2 is observed as a function
of the gate voltage, once the reflection of the
inner edge state at the gate is complete. Af-
ter [145]. The dip around a gate voltage of
−0.2 V can be explained within a trajectory
network formed below the gate.

In Exercise E7.3 the resistances of this system will be calculated. The result
for filling factor N in the ungated region and M in the gated region is
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(7.39)

Note that the results of some measurements now depend on the direction of
the magnetic field.

The Landauer–Büttiker formalism is a powerful tool, which allows to treat
a variety of problems very elegantly. Further examples are treated in the exer-
cises.

7.3.2
Edge channels

So far, we have interpreted edge states as guiding centers of electron trajecto-
ries in strong magnetic fields. Within this picture, the trajectories of electrons
moving in different edge states intersect, and we may expect a strong inter-


