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while the incoming wave functions are related to the outgoing wave func-
tions via a3 = b2eiθ and a2 = b3eiθ. Let us further assume that a wave is
incoming only from the left with amplitude 1, a1 = 1, and no left-moving
wave exists to the right-hand side of the double barrier, a4 = 0. This results
in a vector �b of outgoing amplitudes as a function of incoming amplitudes
�a = (1, b3eiθ, b2eiθ, 0), related by
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Solving for the transmission amplitude b4 gives

b4 =
t1t2eiθ

1− r1r2e2iθ

leading to the transmission amplitude T = b∗4 b4 of Eq. (8.12). In this particular
example, we could easily guess the result by summing up the interference
paths. In more complex structures, however, it may not be so easy to do this,
and the s-matrices prove to be very useful. We will see an example of this
below.

Note that thermal smearing has been neglected. It will be discussed in Ex-
ercise E8.4.

Owing to inelastic scattering events, electrons may lose their phase coher-
ence as they traverse the double barrier. In the case of complete incoherence,
we do not have to sum up the transmission amplitudes, but rather the trans-
mission probabilities of all trajectories. In that case, the result is

Tinc
sd = T1T2 + T1R2R1T2 + · · · =

T1T2

1− R1R2
(8.14)

It should be noted that, in real samples, transport is quite often partly coher-
ent. M. Büttiker found an elegant model for this general situation [46]. The
incoherent part of the transmission is modeled by a reservoir in between the
barriers, which absorbs and re-ejects those electrons whose phase coherence
gets lost.

We conclude this section by discussing the transmission of a quantum ring
in terms of the s-matrix formalism. Earlier on, we already studied the trans-
mission of an open ring as a function of the magnetic field, which revealed the
Aharonov–Bohm effect. The spectrum of an isolated ring is also well known:
in the simplest model, a one-dimensional wire (length 2πR) is bent into a ring,
imposing periodic boundary conditions

�λ = 2πR, � = 0,±1,±2, . . .
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Fig. 8.14 Schematic sketch of the quantum ring under study and the
nomenclature of the partial wave functions.

where λ is the electronic wavelength. As a consequence, the wave number
is quantized in units of 1/R. A magnetic field perpendicular to the plane
of the ring induces a phase shift of ∆φ = 2πΦ/Φ0, where Φ = BA is the
magnetic flux through the ring (A denotes the ring area), and Φ0 = h/e is
the magnetic flux quantum. This corresponds to a magnetic wave vector of
km = ∆φ/2πR = (1/R)Φ/Φ0, and the energy spectrum is given by

E� =
h̄2

2m∗R2 (k� + km)2 =
h̄2

2m∗R2 (� + Φ/Φ0)2 (8.15)

The states are characterized by their angular momentum h̄�. This energy spec-
trum is treated in Exercise E8.3.

Suppose we now couple the ring to two reservoirs to the left and right via
tunable tunnel barriers. How will the spectrum of the isolated ring evolve
into the Aharonov–Bohm effect observed in open rings? The s-matrices offer
a very elegant way to study this evolution. For simplicity, we assume that
both tunnel barriers are equal and that the two branches of the ring have the
same length (Fig. 8.14).

The junction can be described by the so-called Shapiro matrix
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Here c (a) represent the reflection amplitudes for electrons hitting the junction
from lead 1 (2 or 3, respectively), while

√
� and b are transmission amplitudes.

Unitarity of the s-matrix is given for

� = 1
2 (1− c2), a = − 1

2 (1 + c), b = 1
2 (1− c)

or

� = 1
2 (1− c2), a = 1

2 (1− c), b = − 1
2 (1 + c)
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The second set of relations corresponds to two ring branches which become
decoupled from each other as c approaches zero. Therefore, the first solu-
tion describes the situation of interest. Since c is a measure of the coupling
of the ring to the leads, we will express the transmission Tring of the ring as a
function of c. The matrix (sSh) is the s-matrix for the left and right junction.
The incoming amplitudes are coupled to the outgoing ones via�bl,r = (sSh)�al,r

with �bl = (b1, b2, b3), �br = (b4, b5, b6), �al = (a1, a2, a3), and �ar = (a4, a5, a6).
As above, we assume a wave incoming from the left only, with amplitude 1,
and denote the phase collected from the vector potential by φ, such that the
incoming and outgoing waves inside the ring are related via

�a = (�al,�ar) = (1, b4eiθeiφ, b5eiθe−iφ, b2eiθe−iφ, b3eiθeiφ, 0)

This leads to the system of equations
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(8.16)

The transmission probability is given by Tring(c, θ, φ) = b∗6 b6. After solv-
ing Eq. (8.16) for b6 and after some algebra, one finds the somewhat lengthy
expression

Tring(c, θ, φ) = b∗6 b6 =
16(1− c2)2 cos2 φ sin2 θ

A + B + C + D + E
(8.17)

with

A = 5− 4c + 6c2 − 4c3 + 5c4

B = (1 + c)4 cos2(2φ)

C = −4(1− c)2(1 + c2) cos(2θ)

D = −2(1 + c)2 cos2 φ[2(1 + c2) cos(2θ)− (1− c)2]

E = 8c2 cos(4θ)

Fig. 8.15 shows how the transmission as a function of the dynamic phase
θ and the magnetic phase φ evolves as the reflection amplitude is reduced.
Fig. 8.15(a) corresponds to an open ring, showing essentially Aharonov–
Bohm oscillations. Note that here the phase coherence length is infinite. In
order to recover the sinusoidal magneto-oscillations typical for the Aharonov–
Bohm effect, we would have to expand Eq. (8.17) in a Fourier series and plot



244 8 E lectronic phase coherence

Fig. 8.15 Transmission of an ideal quantum ring as a function of θ
and φ for different reflection amplitudes at the ring entrances. Black
corresponds to Tring = 0, white to Tring = 1.

the first order only. The second order gives the Altshuler–Aronov–Spivak os-
cillations. Fig. 8.15(d) shows the transmission for a reflection amplitude close
to 1 (namely c = 0.99). Here, the parabolas of Eq. (8.15) are found (remember
that E ∝ θ2). In Figs. 8.15(b) and (c), the transmission is plotted for c = 0.2 and
0.4, respectively. Hence, as c increases, the transmission gets more and more
concentrated at the edges of the ellipsoidal regions of high transmission in
Fig. 8.15(a). Simultaneously, the shape of these ellipsoid-like regions evolves
into diamond-like structures.




